MATH 324 C
Exam II
November 19, 2012
Name \qquad
Student ID \#
Section \qquad

HONOR STATEMENT
"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE:

1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

- Your exam should consist of this cover sheet, followed by 5 problems. Check that you have a complete exam.
- Pace yourself. You have 50 minutes to complete the exam and there are 5 problems. Try not to spend more than 10 minutes on each page.
- Show all your work and justify your answers.
- Your answers should be exact values rather than decimal approximations. (For example, $\frac{\pi}{4}$ is an exact answer and is preferable to its decimal approximation 0.7854.)
- You may use a scientific calculator and one 8.5×11-inch sheet of handwritten notes. All other electronic devices (including graphing calculators) are forbidden.
- The use of headphones or earbuds during the exam is not permitted.
- There are multiple versions of the exam, you have signed an honor statement, and cheating is a hassle for everyone involved. DO NOT CHEAT.
- Turn your cell phone OFF and put it AWAY for the duration of the exam.

1. (10 points) A wire is bent in the shape pictured below: a portion of the parabola $y=x^{2}$ followed by two line segments. At the point (x, y) the density of the wire is $\rho(x, y)=x$. Find the mass of the wire.

2. (10 points)
(a) Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\left\langle x^{2}+\frac{1}{y}, e^{y}\right\rangle$ and C is the quarter-circle $x^{2}+y^{2}=1$ in the first quadrant traversed counter-clockwise.

(b) Evaluate the line integral

$$
\oint_{C}\left(e^{x}+6 x y\right) d x+\left(8 x^{2}+\sin y^{2}\right) d y
$$

where C is the curve consisting of the arcs of the quarter-circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=9$ in the first quadrant, along with the line segments that join the arcs along the x - and y-axes as shown below.

3. (10 points) Let $\mathbf{F}(x, y, z)=\left\langle x^{3}-3 x y^{2}, y^{3}-3 x^{2} y, 30 z\right\rangle$.
(a) Find a function $f(x, y, z)$ such that $\mathbf{F}=\nabla f$.
(b) Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the portion of the helix

$$
x=3 \cos t, y=3 \sin t, z=t, \text { for } 0 \leq t \leq \pi .
$$

4. (10 points) The temperature in degrees Celsius at the point (x, y) is given by the function

$$
T(x, y)=\sqrt{2 x^{2}-y}
$$

(a) A heat-seeking bug sits on the $x y$-plane at the point $(3,2)$. In what direction should the bug travel to increase its temperature at the fastest rate? (Express your answer as a vector in \mathbb{R}^{2}.)
(b) What is that rate? (Assume x and y are measured in centimeters and include units in your answer.)
5. (10 points)
(a) Let $\mathbf{F}(x, y, z)=(\cos x-z) \mathbf{i}+y^{2} \mathbf{j}+x z \mathbf{k}$.
i. Find a point (x, y, z) at which $\operatorname{curl} \mathbf{F}=\mathbf{j}$.
ii. Is there a vector field \mathbf{G} such that $\mathbf{F}=\operatorname{curl} \mathbf{G}$? Explain.
(b) Give a parameterization $x=x(u, v), y=y(u, v), z=z(u, v)$ of the plane that contains the points $(0,1,1),(1,2,3)$, and $(2,2,1)$.
(c) Let $f(x, y, z)=x^{3}+y z^{2}$ and suppose $x=x(s, t), y=y(s, t)$, and $z=z(s, t)$. The table below gives the values of x, y, and z at the point $(s, t)=(-1,-1)$ as well as their partial derivatives at that point. Compute $\frac{\partial f}{\partial s}$ at the point $(s, t)=(-1,-1)$.

	at the point $(s, t)=(-1,-1)$
x	1
y	0
z	1
x_{s}	-2
x_{t}	1
y_{s}	1
y_{t}	-2
z_{s}	-1
z_{t}	-1

