Print v	your name:	
	0 001 1101110.	

This exam has 6 questions on 5 pages, worth a total of 50 points.

Problem	Points	Score
1	4	
2	6	
3	10	
4	10	
5	10	
6	10	
Total	50	

You should:

- write complete solutions or you may not receive credit.
- box your final answer.

You may:

- use one sheet of notes and a non-graphing calculator.
- write on the backs of the pages if you need more room.

Please do not:

- come to the front of the room to ask questions (raise your hand).
- share notes or calculators.
- use any electronic device other than a calculator.

Signature. Please sign below to indicate that you have not and will not give or receive any unauthorized assistance on this exam.

Signature:		
Samoture.		
лунанне.		

1. (4 points) Suppose $f(x,y) = x^2y + y^2$, and x = x(u,v) and y = y(u,v) are functions of u and v, with

$$x(1,2) = 3$$
 $\frac{\partial x}{\partial u}(1,2) = -1$ $y(1,2) = 1$ $\frac{\partial y}{\partial u}(1,2) = 2$,

Find $\frac{\partial f}{\partial u}$ when u = 1 and v = 2.

- 2. Let $g(x, y) = x \sin y$.
 - (a) (3 points) Determine the directional derivative $D_{\mathbf{u}}g(1,0)$ if $\mathbf{u} = \left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$.

(b) (3 points) Find a unit vector \mathbf{v} so that $D_{\mathbf{v}}g(1,0)<-\frac{3}{4}$.

3. (10 points) Let E be the solid bounded by the following four planes:

$$x = 0$$

$$y = 0$$

$$z = 0$$

$$2x + 2y + z = 4$$

Find the x-coordinate of the center of mass if the solid has constant density.

4. Consider the region whose volume is naturally given by the integral

$$\int_0^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_0^{\sqrt{x^2+y^2}} 1 \, dz \, dy \, dx.$$

(a) (5 points) Write an integral in cylindrical coordinates that computes the volume of the same region. *Do not evaluate the integral.*

(b) (5 points) Write an integral in spherical coordinates that computes the volume of the same region. *Do not evaluate the integral.*

5. (a) (8 points) Compute the integral

$$\iiint_R yz^2 \, dV$$

where R is one of the four (you choose) regions bounded by the cylinder $x^2 + y^2 = 1$ and the three planes z = 2x, z = 0, and y = 0, as shown below.

(b) (2 points) Now use symmetry to determine the value of the same integral over each of the 4 regions:

	$x \le 0, z \le 0$	$x \ge 0, z \ge 0$
$y \le 0$		
$y \ge 0$		

6. (10 points) Compute the integral

$$\int_0^1 \int_0^{1-x} \exp\left(\frac{x-y}{x+y}\right) dy \, dx$$

using the change of coordinates u=x-y, v=x+y. Note that exp is the exponential function: $\exp a=e^a$.