
14.5 and 14.6: Chain Rule, Directional Derivatives and the Gradient

In these sections we pick up some tools that are generally important in the understanding of multivariable
calculus and specifically will be important in chapter 16.

14.5: The Chain Rule

1. Recall: If y = f(x), then dy
dx

= f ′(x) is the slope of the tangent line to f(x) which is the same as
instantaneous rate of change of y with respect to x.
If z = f(x, y), then ∂z

∂x
= fx(x, y) is the ‘slope’ in the direction parallel to the x-axis which is the

same as the instantaneous rate of change of z with respect to x.
In this section we consider these rates in situations when input variables for a multi-variable
function are also variables of other parameters. These considerations will be important as we
consider parametric curves and parametric surfaces along 2 and 3 variable functions in chapter
16.

2. CASE 1: Assume z = f(x, y) is a surface and x = g(t) and y = h(t).

We can think of x = g(t), y = h(t) as motion along some parameterized curve, C. If we want to
know the change in z with respect to t as we move along this curve, we can use the generalized
chain rule:
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3. CASE 2: Assume z = f(x, y) is a surface, x = g(s, t) and y = h(s, t).

Here x and y are defined in terms of two parameters. If we wish to measure the rate of change of
z with respect to one of the parameters s or t, we get the very similar rules:
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4. These results generalize to more variables. To help explain the generalization, a quick discussion
of variable names. In CASE 2, we had

• z is the dependent variable

• x and y are intermediate variables

• s and t are independent variables

We can summarize these relationships in a tree diagram.

When we want to find
∂z

∂t
for example, we go through the tree to get to every possible t (multiplying

the derivatives along a branch and adding separate branches together). This is an easy way to
explain the more general form of the chain rule which follows the same pattern.



14.6: Directional Derivatives and Gradients

1. If this section we are given a multivariable function, such as the surface z = f(x, y) and we wish
to measure the rate of change in various directions (not just parallel to the x and y axis). If we are
given a direction by a unit vector u = 〈a, b〉 (meaning a2 +b2 = 1), then we define the directional
derivative of f(x, y) in the direction of u by

Duf(x, y) = lim
h→0

f(x + ha, y + hb) − f(x, y)

h
or Duf(x) = lim

h→0

f(x + hu) − f(x)

h

where x = 〈x, y〉.
This definition is the same for 3, 4, 5, ... variable functions.
Unit Direction Vector Note: Often a unit direction vector u = 〈a, b〉 is described in terms of
an angle, θ. If θ is measured counterclockwise on the xy-plane from the positive x-axis (in the
same way as we do in polar, cylindrical and spherical coordinates), then we know from some basic
trig that the unit direction vector is given by u = 〈cos(θ), sin(θ)〉. In any case, the direction vector
will satisfy u = 〈a, b〉 = 〈cos(θ), sin(θ)〉 with a2 + b2 = 1.
Partial Derivatives Note: If u = 〈1, 0〉, then the direction vector is parallel to the x-axis an
we get D〈1,0〉f(x, y) = fx(x, y). Similarly D〈0,1〉f(x, y) = fy(x, y).

2. The gradient vector is the vector containing each partial derivative as components. That is,

∇f(x, y) = 〈fx(x, y), fy(x, y)〉 =

〈
∂z

∂x
,
∂z

∂y

〉
and ∇f(x, y, z) = 〈fx(x, y), fy(x, y), fz(x, y)〉

The symbol ∇ is often called the gradient operator. For a multivariable function, it means take
all partial derivatives and express them in a vector as above.

3. In the book, and in class, we quickly derived the connection between the directional derivatives
and gradient. We found:

Duf(x, y) = afx(x, y) + bfy(x, y) = ∇f(x, y) · u.

This results extend naturally to three dimensions.

4. Significance of Gradient: If f is a function of two or three variables, then

(a) |∇f(x)| = the maximum values of Duf(x) over all possible directions u.

(b) And this maximum occurs when u is in the same direction as ∇f(x).

5. Notes on the Gradient for a function of two variables: Let z = f(x, y) be a surface.
Consider the contour map we get by plotting the level curves f(x, y) = k in the xy-plane for
various values of k. At any point, (x0, y0), the gradient vector ∇f(x0, y0) gives the direction of
steepest ascent along the surface. So the gradient vector is always perpendicular to any level curve
f(x, y) = k.

6. Notes on the Gradient for a function of three variables: Let w = f(x, y, z) be a function.
Consider the level surfaces you get by plotting f(x, y, z) = k for various values of k. At any
point (x0, y0, z0), the gradient vector ∇f(x0, y0, z0) gives the direction of greatest increase. So
the gradient is always orthogonal to the level surface f(x, y, z) = k. Another way to say this is
that if r(t) is any curve along the level surface f(x, y, z) = k that goes through (x0, y0, z0) at the
parameter value t0, then by differentiating f(x(t), y(t), z(t)) = k we get ∂f
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= 0,

so ∇f(x0, y0, z0) · r′(t0) = 0. The gradient vector is orthogonal to any curve traveling along a level
surface.


