Final

2018-03-15

Name: \qquad
Student ID Number:

Question	Points	Score
1	12	
2	12	
3	12	
4	12	
5	12	
6	12	
Total:	72	

- There are 6 problems on this exam. Be sure you have all 6 problems on your exam.
- The final answer must be left in exact form. Box your final answer.
- You are allowed the TI-30XIIS calculator. It is possible to complete the exam without a calculator.
- You are allowed a single sheet of 2-sided handwritten self-written notes.
- You must show your work to receive full credit. A correct answer with no supporting work will receive a zero.
- Use the backsides if you need extra space. Make a note of this if you do.
- Do not cheat. This exam should represent your own work. If you are caught cheating, I will report you to the Community Standards and Student Conduct office.

Conventions:

- I will often denote the zero vector by 0 .
- When I define a variable, it is defined for that whole question. The A defined in Question 2 is the same for each part.
- I treat row and column vectors as the same.
- For any linear transformation T, there exists a matrix A such that $T(x)=A x$. I defined the determinant, rank, and nullity of T using A. This means,

$$
\operatorname{det}(T)=\operatorname{det}(A), \quad \operatorname{rank}(T)=\operatorname{rank}(A), \quad \operatorname{nullity}(T)=\operatorname{nullity}(A)
$$

1. Give an example of each of the following. If it is not possible, write "NOT POSSIBLE". You do not need to justify your answers.
(a) (2 points) If possible, give an example of a linear system of equations whose solution space is the $(1,2,3)+s_{1}(1,0,0)$ line.
(b) (2 points) If possible, give an example of a 2×2 matrix A such that $A \neq 0, I$ and $A(A-I)=0$.
(c) (2 points) If possible, give an example of a 2×2 invertible matrix, A, such that $e_{1}-e_{2} \notin \operatorname{col}(A)$.
(d) (2 points) If possible, give an example of two invertible 2×2 matrices A and B such that $A+B$ is not invertible.
(e) (2 points) If possible, give an example of two 2×2 matrices A and B that are neither zero nor the identity matrix such that $A B=B A$.
(f) (2 points) If possible, give an example of two linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that 2 is an eigenvalue of T and 3 is an eigenvalue of S but 6 is not an eigenvalue of $T \circ S$.
2. (a) (6 points) Let

$$
A=\left[\begin{array}{cc}
1 & -3 \\
0 & 2
\end{array}\right]
$$

1. What is the characteristic polynomial of A^{-1} ?
2. The matrix A is diagonalizable so it can be written as $A=U D U^{-1}$. What is U and D ?
(b) (6 points) Let

$$
B=\left[\begin{array}{lll}
4 & 0 & 2 \\
0 & 1 & 2 \\
0 & 2 & 4
\end{array}\right]
$$

1. What is the reduced echelon form of B ?
2. What is the general solution to $B x=(6,3,6)$?
3. Let A and B be equivalent matrices defined by

$$
A=\left[\begin{array}{cccc}
1 & 2 & 0 & -1 \\
0 & 1 & 0 & 3 \\
0 & 1 & 1 & 0 \\
2 & 5 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 0 & -7 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]=B
$$

Let $a_{1}, a_{2}, a_{3}, a_{4}$ denote the columns of A.
(a) (3 points) Do not write express a basis as a matrix.

1. Give a basis for $\operatorname{col}\left(2 A^{t}\right)$.
2. Give a basis for $\operatorname{null}(A)$.
3. Give a basis for $\operatorname{row}(A)$.
(b) (3 points) These should be quick questions.
4. What is $\operatorname{rank}(A)$?
5. What is nullity $\left(A^{t} D^{-1}\right)$, where D is the 4×4 diagonal matrix consisting of $1,2,3,4$ along the diagonal.
6. What is $\operatorname{det}(2 A)$?
(c) (3 points) Give a nontrivial linear combination of the columns of A that sum to zero. You may use $a_{1}, a_{2}, a_{3}, a_{4}$ to denote the columns of A.
(d) (3 points) Let C be the 4×3 matrix given by $C=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right]$. So C is the submatrix of A consisting of the first 3 columns. Give the general solution for $C x=a_{1}+a_{4}$.
7. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
T(w, x, y, z)=(w+y+z, x+y+z, x+y+z) .
$$

(a) (3 points) There is a matrix A such that $T(x)=A x$. What is A ?
(b) (3 points) Let $v=(0,3,0,8)$. Give the general solution to $A x=2 A v+(2,1,1)$.
(c) (3 points) Does there exists a rank 2 linear transformation S such that $T \circ S$ is the zero transformation? If so, give an example. If not, why not?
(d) (3 points) Does there exists a rank 3 linear transformation S such that $T \circ S$ is the zero transformation? If so, give an example. If not, why not?
5. Let

$$
A=\left[\begin{array}{cccc}
0 & -1 & \frac{37}{3} & -\frac{253}{15} \\
0 & 2 & 0 & -\frac{1}{5} \\
0 & 0 & 2 & \frac{7}{5} \\
0 & 0 & 0 & 3
\end{array}\right]
$$

be a matrix which decomposes as $A=U D U^{-1}$, where

$$
U=\left[\begin{array}{cccc}
1 & -1 & 18 & 1 \\
0 & 2 & 1 & -1 \\
0 & 0 & 3 & 7 \\
0 & 0 & 0 & 5
\end{array}\right], \quad D=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

Let $u_{1}, u_{2}, u_{3}, u_{4}$ be the columns of U and $\mathcal{B}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$.
(a) (6 points) Fill out this table.

Eigenvalue λ	Alg. Multiplicity of λ	Geo. Multiplicity of λ	Basis for E_{λ}

(b) (3 points) Let $x=u_{1}+u_{2}+u_{3}+u_{4}$. Express $A^{18} x$ as a linear combination of $u_{1}, u_{2}, u_{3}, u_{4}$. You are allowed to have exponents of numbers in your answer. (Hint: x has been expressed as the sum of eigenvectors.)
(c) (3 points) What are the eigenvalues for $A^{2}-2 A$?
6. Let $T(x)=A x$, where A is as defined in Question 5. Let $u_{1}, u_{2}, u_{3}, u_{4}$ also be as defined in Question 5 .
(a) (4 points) Give two vectors v, w such that the triangle with vertices $\{T(0), T(v), T(w)\}$ has 6 times the area as the triangle with vertices $\{0, v, w\}$. Be sure to justify your answer. (Hint: It is unnecessary to compute the area of these triangles.)
(b) (4 points) Find a basis for each of the following subspaces. If a subspace is trivial, then write \emptyset for its basis.

- $\operatorname{null}(A-2 I)$
- $\operatorname{null}\left(A^{2}-3 I\right)$.
(c) (4 points) Let $B=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be a basis.
- What is the general solution to $A x=u_{2}+2 u_{3}$?
- Let y be a particular solution to the above linear system. What is $[y]_{B}$?

