Math 308H - Winter 2018 Final 2018-03-15

Name:		
Student	ID	Number:

Question	Points	Score
1	12	
2	12	
3	12	
4	12	
5	12	
6	12	
Total:	72	

- There are 6 problems on this exam. Be sure you have all 6 problems on your exam.
- The final answer must be left in exact form. Box your final answer.
- You are allowed the TI-30XIIS calculator. It is possible to complete the exam without a calculator.
- You are allowed a single sheet of 2-sided handwritten self-written notes.
- You must show your work to receive full credit. A correct answer with no supporting work will receive a zero.
- Use the backsides if you need extra space. Make a note of this if you do.
- Do not cheat. This exam should represent your own work. If you are caught cheating, I will report you to the Community Standards and Student Conduct office.

Conventions:

- I will often denote the zero vector by 0.
- When I define a variable, it is defined for that whole question. The A defined in Question 2 is the same for each part.
- I treat row and column vectors as the same.
- For any linear transformation T, there exists a matrix A such that T(x) = Ax. I defined the determinant, rank, and nullity of T using A. This means,

$$det(T) = det(A), \quad rank(T) = rank(A), \quad nullity(T) = nullity(A).$$

- 1. Give an example of each of the following. If it is not possible, write "NOT POSSIBLE". You do not need to justify your answers.
 - (a) (2 points) If possible, give an example of a linear system of equations whose solution space is the $(1, 2, 3) + s_1(1, 0, 0)$ line.
 - (b) (2 points) If possible, give an example of a 2×2 matrix A such that $A \neq 0, I$ and A(A I) = 0.
 - (c) (2 points) If possible, give an example of a 2×2 invertible matrix, A, such that $e_1 e_2 \notin col(A)$.
 - (d) (2 points) If possible, give an example of two invertible 2×2 matrices A and B such that A + B is not invertible.
 - (e) (2 points) If possible, give an example of two 2×2 matrices A and B that are neither zero nor the identity matrix such that AB = BA.
 - (f) (2 points) If possible, give an example of two linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ and $S : \mathbb{R}^2 \to \mathbb{R}^2$ such that 2 is an eigenvalue of T and 3 is an eigenvalue of S but 6 is not an eigenvalue of $T \circ S$.

2. (a) (6 points) Let

$$A = \begin{bmatrix} 1 & -3 \\ 0 & 2 \end{bmatrix}.$$

- 1. What is the characteristic polynomial of A^{-1} ?
- 2. The matrix A is diagonalizable so it can be written as $A = UDU^{-1}$. What is U and D?

(b) (6 points) Let

$$B = \begin{bmatrix} 4 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \end{bmatrix}.$$

1. What is the reduced echelon form of B?

2. What is the general solution to Bx = (6, 3, 6)?

3. Let A and B be equivalent matrices defined by

$$A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ 0 & 1 & 0 & 3 \\ 0 & 1 & 1 & 0 \\ 2 & 5 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -7 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix} = B$$

Let a_1, a_2, a_3, a_4 denote the columns of A.

- (a) (3 points) Do not write express a basis as a matrix.
 - 1. Give a basis for $\operatorname{col}(2A^t)$.
 - 2. Give a basis for $\operatorname{null}(A)$.
 - 3. Give a basis for row(A).
- (b) (3 points) These should be quick questions.
 - 1. What is rank(A)?
 - 2. What is nullity $(A^t D^{-1})$, where D is the 4×4 diagonal matrix consisting of 1, 2, 3, 4 along the diagonal.
 - 3. What is det(2A)?
- (c) (3 points) Give a nontrivial linear combination of the columns of A that sum to zero. You may use a_1, a_2, a_3, a_4 to denote the columns of A.
- (d) (3 points) Let C be the 4×3 matrix given by $C = [a_1 \ a_2 \ a_3]$. So C is the submatrix of A consisting of the first 3 columns. Give the general solution for $Cx = a_1 + a_4$.

4. Let $T : \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation defined by

$$T(w, x, y, z) = (w + y + z, x + y + z, x + y + z).$$

(a) (3 points) There is a matrix A such that T(x) = Ax. What is A?

(b) (3 points) Let v = (0, 3, 0, 8). Give the general solution to Ax = 2Av + (2, 1, 1).

(c) (3 points) Does there exists a rank 2 linear transformation S such that $T \circ S$ is the zero transformation? If so, give an example. If not, why not?

(d) (3 points) Does there exists a rank 3 linear transformation S such that $T \circ S$ is the zero transformation? If so, give an example. If not, why not?

5. Let

$$A = \begin{bmatrix} 0 & -1 & \frac{37}{3} & -\frac{253}{15} \\ 0 & 2 & 0 & -\frac{1}{5} \\ 0 & 0 & 2 & \frac{7}{5} \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

be a matrix which decomposes as $A = UDU^{-1}$, where

$$U = \begin{bmatrix} 1 & -1 & 18 & 1 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 3 & 7 \\ 0 & 0 & 0 & 5 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

Let u_1, u_2, u_3, u_4 be the columns of U and $\mathcal{B} = \{u_1, u_2, u_3, u_4\}.$

(a) (6 points) Fill out this table.

Eigenvalue λ	Alg. Multiplicity of λ	Geo. Multiplicity of λ	Basis for E_{λ}

(b) (3 points) Let $x = u_1 + u_2 + u_3 + u_4$. Express $A^{18}x$ as a linear combination of u_1, u_2, u_3, u_4 . You are allowed to have exponents of numbers in your answer. (Hint: x has been expressed as the sum of eigenvectors.)

(c) (3 points) What are the eigenvalues for $A^2 - 2A$?

- 6. Let T(x) = Ax, where A is as defined in Question 5. Let u_1, u_2, u_3, u_4 also be as defined in Question 5.
 - (a) (4 points) Give two vectors v, w such that the triangle with vertices $\{T(0), T(v), T(w)\}$ has 6 times the area as the triangle with vertices $\{0, v, w\}$. Be sure to justify your answer. (Hint: It is unnecessary to compute the area of these triangles.)

- (b) (4 points) Find a basis for each of the following subspaces. If a subspace is trivial, then write \emptyset for its basis.
 - $\operatorname{null}(A 2I)$

• $\operatorname{null}(A^2 - 3I)$.

- (c) (4 points) Let $B = \{u_1, u_2, u_3, u_4\}$ be a basis.
 - What is the general solution to $Ax = u_2 + 2u_3$?

• Let y be a particular solution to the above linear system. What is $[y]_B$?