Name: \qquad
Student ID Number:

Question	Points	Score
1	12	
2	12	
3	12	
4	12	
5	12	
Total:	60	

- There are 5 problems on this exam. Be sure you have all 5 problems on your exam.
- The final answer must be left in exact form. Box your final answer.
- You are allowed the TI-30XIIS calculator. It is possible to complete the exam without a calculator.
- You are allowed a single sheet of 2-sided handwritten self-written notes.
- You must show your work to receive full credit. A correct answer with no supporting work will receive a zero.
- Use the backsides if you need extra space. Make a note of this if you do.
- Do not cheat. This exam should represent your own work. If you are caught cheating, I will report you to the Community Standards and Student Conduct office.

Conventions:

- I will often denote the zero vector by 0 .
- When I define a variable, it is defined for that whole question. The A defined in Question 2 is the same for the entire page.
- I often use x to denote the vector $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. It should be clear from context.
- Row and column vectors are distinguished by context. You may ask if you are unsure.

1. If possible, give an example of each of the following. Be sure to explain why your example fits the condition of the problem. If it is not possible, write "NOT POSSIBLE" and briefly explain why. The explanation matters for the grading of this problem. For example, writing "NOT POSSIBLE" with a completely wrong explanation or no explanation could possibly yield zero points.
(a) (3 points) If possible, give an example of a linear transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ with nullity 1.
(b) (3 points) If possible, give an example of two linear transformations $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $\operatorname{rank}(T)=\operatorname{rank}(S)=2$ but $\operatorname{rank}(T \circ S)=1$.
(c) (3 points) If possible, give an example of a 2-dimensional subspace of \mathbb{R}^{3} that contains all of the the vectors $(1,0,0),(1,1,0),(1,1,1)$. You may define your subspace as either a span or a nullspace.
(d) (3 points) If possible, give an example of a 2×3 matrix A whose columns are not spanning but $A x=e_{1}$ has a solution.
2. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $T(x, y, z)=(x+2 z, x+2 y+z, z)$. There is a matrix A such that $T(x)=A x$.
(a) (4 points) What is A ?
(b) (4 points) What is A^{-1} ?
(c) (4 points) Let

$$
B=\left(\begin{array}{ccc}
5 & 1 & -11 \\
0 & -1 & 21 \\
0 & 0 & 1
\end{array}\right)
$$

What is $\operatorname{det}\left(2 A B^{2}\right)$? You may leave your answer as a product of integers and their exponents. (For example, $2^{100} \cdot 3 \cdot 12$)
3. Let A and B be equivalent matrices defined by:

$$
A=\left(\begin{array}{rrrr}
1 & -1 & 3 & -2 \\
2 & 1 & 0 & 5 \\
0 & -3 & 6 & -9 \\
0 & 2 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{rrrr}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)=B
$$

(a) (3 points) Give a basis for $\operatorname{null}(A)$.
(b) (3 points) Give a basis for $\operatorname{col}(A)$.
(c) (3 points) Give a basis for $\operatorname{row}(A)$.
(d) (3 points) Let a_{4} be the fourth column of A. Does there exist a vector $x \in \mathbb{R}^{4}$ such that $x \in$ $\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}$ and $A x=a_{4}$? If so, what is an example? If not, why not?
4. Let $\left\{u_{1}, u_{2}, u_{3}\right\}$ be a basis with

$$
u_{1}=(1,2,3), \quad u_{2}=(3,0,8), \quad u_{3}=(5,18,2018)
$$

Let

$$
v_{1}=(1,-1,2), \quad v_{2}=(0,1,-1), \quad v_{3}=v_{1}+v_{2}=(1,0,1) .
$$

(a) (3 points) Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation defined so that

$$
T\left(e_{1}\right)=v_{1}, \quad T\left(e_{2}\right)=v_{2}, \quad T\left(e_{3}\right)=v_{3}
$$

There is a matrix A such that $T(x)=A x$. What is A ?
(b) (3 points) Suppose $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation defined so that

$$
S\left(u_{1}\right)=v_{1}, \quad S\left(u_{2}\right)=v_{2}, \quad S\left(u_{3}\right)=v_{3} .
$$

There is a matrix B so that $S(x)=B x$. What is B ? You may express B as products of explicit matrices and their inverses.
(c) (3 points) Give a basis for range (S).
(d) (3 points) Give a basis for $\operatorname{ker}(S)$.
5. Let A and B be equivalent matrices defined by:

$$
A=\left(\begin{array}{rrrr}
1 & 3 & -7 & 1 \\
2 & 0 & 4 & 0 \\
3 & 8 & -18 & 1
\end{array}\right) \sim\left(\begin{array}{rrrr}
1 & 0 & 2 & 0 \\
0 & 1 & -3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=B .
$$

The usefulness of A and B is for you to decide. Let $a_{1}, a_{2}, a_{3}, a_{4} \in \mathbb{R}^{3}$ be the columns of A. Let $b_{1}, b_{2}, b_{3} \in \mathbb{R}^{4}$ be the rows of B.
Let $S: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that $S\left(b_{1}\right)=a_{1}, S\left(b_{2}\right)=a_{2}$, and $S\left(b_{3}\right)=a_{3}$. This problem does not provide complete information about S.
(a) (4 points) Is there enough information to determine $S(2,1,1,1)$? If so, what is it? If not, why not? You may write your answer as a linear combination of a_{i} 's.
(b) (4 points) Is there enough information to determine $S(2,3,1,-2)$? If so, what is it? If not, why not? You may write your answer as a linear combination of a_{i} 's.
(c) (4 points) Give a nonzero vector in $\operatorname{ker}(S)$. You may write your answer as a linear combination of vectors.

