Math 308 Spring '18
Midterm 1
2018-04-20
Name: \qquad
Student ID Number:

Question	Points	Score
1	12	
2	12	
3	12	
4	12	
5	12	
Total:	60	

- There are 5 problems on this exam. Be sure you have all 5 problems on your exam.
- The final answer must be left in exact form. Box your final answer.
- You are allowed the TI-30XIIS calculator. It is possible to complete the exam without a calculator.
- You are allowed a single sheet of 2-sided handwritten self-written notes.
- You must show your work to receive full credit. A correct answer with no supporting work will receive a zero.
- Use the backsides if you need extra space. Make a note of this if you do.
- Do not cheat. This exam should represent your own work. If you are caught cheating, I will report you to the Community Standards and Student Conduct office.

Conventions:

- I will often denote the zero vector by 0 .
- When I define a variable, it is defined for that whole question. The A defined in Question 2 is the same for the entire page.
- I often use x to denote the vector $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. It should be clear from context.
- Sometimes I write vectors as a row and sometimes as a column. The following are the same to me.

$$
(1,2,3) \quad\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

- I write the evaluation of linear transforms in a few ways. The following are the same to me.

$$
T(1,2,3) \quad T((1,2,3)) \quad T\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right)
$$

1. Give an example of each of the following. If it is not possible, write "NOT POSSIBLE". You do not need to justify.
(a) (3 points) If possible, give an example of a linear system with more variables than equations and only finitely many solutions.
(b) (3 points) If possible, give an example of a one-to-one linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ whose range does not contain $(1,0,0)$.
(c) (3 points) If possible, give an example of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ that is not one-to-one.
(d) (3 points) If possible, give an example of a linearly dependent set of 3 vectors $\{u, v, w\}$ in \mathbb{R}^{3} such that $\{u, v\},\{u, w\}$, and $\{v, w\}$ are linearly independent.
2. Let

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 3 \\
0 & 1 & 1 & 1 \\
1 & 2 & 1 & 4
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)
$$

(a) (6 points) Give the general solution to $A x=b$. (Hint: The sum of the components in the reduced echelon form of A is 5.)
(b) (3 points) Give 3 particular solutions to $A x=b$ that do not lie on a line. To save time, you may consider naming some vectors. You may also leave your answer as a linear combination of vectors. (Here we are thinking of vectors as points in space.)
(c) (3 points) Does there exists a vector $y \in \mathbb{R}^{3}$ such that $A x=y$ has no solutions? Justify your answer. This is a yes-no question.
3. Let A and B be equivalent matrices given by

$$
A=\left(\begin{array}{rrrr}
1 & -1 & 3 & 6 \\
2 & -2 & 0 & 6 \\
3 & -3 & 8 & 17
\end{array}\right) \sim\left(\begin{array}{rrrr}
1 & -1 & 0 & 3 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)=B
$$

Let $S=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ be the set of columns of A. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by $T(x)=A x$.
The following are quick questions that you should briefly justify with a single sentence or two.
(a) (2 points) Is T one-to-one?
(b) (2 points) Is T onto?
(c) (2 points) Is S linearly independent?
(d) (2 points) Is S spanning?
(e) (2 points) Let $b=4 a_{1}+20 a_{2}+2018 a_{3}$. What is the dimension of the solution space to $A x=b$? (Hint: If you claim a solution exists or does not exist, you should explain why.)
(f) (2 points) Is there a choice of $b \in \mathbb{R}^{3}$ such that the solution space to $A x=b$ contains finitely many points? (Same hint as above.)
4. Let

$$
u_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), u_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), u_{3}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)
$$

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation such that

$$
T\left(u_{1}\right)=\binom{1}{0}, T\left(u_{2}\right)=\binom{0}{1}, T\left(u_{3}\right)=\binom{1}{1}
$$

(a) (4 points) Is T one-to-one? Is it onto? Briefly justify.
(b) (4 points) Write $e_{3}=(0,0,1)$ as a linear combination of u_{1}, u_{2}, u_{3}.
(c) (4 points) There is a matrix B such that $T(x)=B x$. What is B ?
5. Let A and B be equivalent matrices given by

$$
A=\left(\begin{array}{rrrrr}
1 & 3 & 5 & 4 & 13 \\
-1 & 0 & -2 & 2 & -1 \\
1 & 8 & 10 & 0 & 19
\end{array}\right) \sim\left(\begin{array}{lllll}
1 & 0 & 2 & 0 & 3 \\
0 & 1 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)=B
$$

As usual, let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ denote the columns of A.
(a) (4 points) Give the homogeneous solution to $A x=0$.
(b) (4 points) Give the general solution to $2 A x=a_{2}-a_{4}$. (Hint: $A e_{i}=a_{i}$.)
(c) (4 points) The columns corresponding to free variables are a_{3} and a_{5}. Write them as a linear combination of a_{1}, a_{2}, a_{4}.

