Your Name	Student ID #

- Do not open this exam until you are told to begin. You will have 50 minutes for the exam.
- Check that you have a complete exam. There are 4 questions for a total of 50 points.
- You are allowed to have one single sided, handwritten note sheet. Calculators are not allowed.
- Cheating will result in a zero and be reported to the Dean's Academic Conduct Committee.
- Show all your work. With the exception of True/False questions, if there is no work supporting your answer, you will not receive credit for the problem. If you need more space to answer a question, continue on the back of the page, and indicate that you have done so.

Question	Points	Score
1	18	
2	8	
3	12	
4	12	
Total:	50	

- 1. (18 points) True/False and short answer. For these questions, you are not required to show any work.
 - (a) A system of equations with more variables than equations **cannot** have a unique solution.
 - True False
 - (b) If m < n, a set of m vectors in \mathbb{R}^n cannot span \mathbb{R}^n .
 - True False
 - (c) If m < n, any set of m vectors in \mathbb{R}^n is linearly independent.
 - True False
 - (d) If the equation $A\mathbf{x} = \mathbf{0}$ has a unique solution, then the columns of A are linearly independent.
 - (e) If $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u_3}\}$ is linearly dependent, then $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u_3}, \mathbf{u_4}\}$ is linearly dependent (where all vectors have the same dimension).
 - True False
 - (f) If $\mathbf{u_4}$ is **not** a linear combination of $\{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}\}$, then $\{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}, \mathbf{u_4}\}$ is linearly independent (where all vectors have the same dimension).
 - True False
 - (g) Give an example of a linear system with more variables than equations that has no solution.

(h) Give an example of three distinct nonzero vectors in \mathbb{R}^2 that don't span \mathbb{R}^2 .

(i) Give an example of two vectors \mathbf{u}_1 and \mathbf{u}_2 in \mathbb{R}^3 such that $\operatorname{span}\{\mathbf{u}_1,\mathbf{u}_2\}$ is the set of all vectors \mathbf{v} of the form $\mathbf{v} = \begin{bmatrix} a_1 \\ a_2 \\ 0 \end{bmatrix}$.

2. Consider the linear system

$$x_1 - 2x_3 + x_4 = 0$$
$$x_1 + x_2 - 2x_3 = 0$$

$$x_1 - 2x_2 - 2x_3 + 3x_4 = 0$$

(a) (5 points) Solve the system and write your answer in vector form.

(b) (3 points) Find vectors \mathbf{u}_1 and \mathbf{u}_2 such that the solution set is given by span $\{\mathbf{u}_1, \mathbf{u}_2\}$. (Hint: your answer to (a) may be helpful).

3. Consider the vector equation

$$x_1 \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ -4 \\ a \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ b \end{bmatrix}$$

(a) (4 points) For what values of a and b does the equation have no solution?

(b) (4 points) For what values of a and b does the equation have infinitely many solutions?

(c) (4 points) Give an example of a and b where the equation has exactly one solution, and solve for (x_1, x_2, x_3) in that case.

4. Consider the vectors

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} -2 \\ 3 \\ 4 \end{bmatrix}$$

(a) (4 points) Show that the vectors $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ do NOT span \mathbb{R}^3 and give an example of a vector \mathbf{v} that is not in their span.

(b) (4 points) Are the vectors $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{v}\}$ linearly independent? (Note \mathbf{v} should be the vector you found in part (a).) Justify your answer.

(c) (4 points) Do the vectors $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{v}\}$ span \mathbb{R}^3 ? Justify your answer.