Name: \qquad
Student ID Number:

Question	Points	Score
1	12	
2	12	
3	12	
4	12	
5	12	
6	12	
7	12	
Total:	84	

- There are 7 problems on this exam. Be sure you have all 7 problems on your exam.
- The final answer must be left in exact form. Box your final answer.
- You are allowed the TI-30XIIS calculator. It is possible to complete the exam without a calculator.
- You are allowed a single sheet of 2-sided self-written notes.
- You must show your work to receive full credit. A correct answer with no supporting work will receive a zero.
- Use the backsides if you need extra space. Make a note of this if you do.
- Do not cheat. This exam should represent your own work. If you are caught cheating, I will report you to the Community Standards and Student Conduct office.

Conventions:

- I will often denote the zero vector by 0 .
- When I define a variable, it is defined for that whole question. The A defined in Question 2 is the same for each part.
- I often use x to denote the vector $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. It should be clear from context.
- Sometimes I write vectors as a row and sometimes as a column. The following are the same to me.

$$
(1,2,3) \quad\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

- I write the evaluation of linear transformations in a few ways. The following are the same to me.

$$
T(1,2,3) \quad T((1,2,3)) \quad T\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right)
$$

1. Give an example of each of the following. If it is not possible, write "NOT POSSIBLE".
(a) (2 points) Give an example of a 2×3 matrix A and a vector $b \in \mathbb{R}^{2}$ such that $A x=b$ has no solutions but $A x=0$ has infinitely many solutions.
(b) (2 points) Give an example of a linear system in 3 variables whose solution space is the intersection of the $x+y+z=0$ plane and the $x y$-plane.
(c) (2 points) Give an example of a 2×2 matrix A such that $A^{4}=I_{2}$ but $A^{2} \neq I_{2}$. If possible, give the matrix A explicitly.
(d) (2 points) Give an example of 2 linear transformations $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\operatorname{range}(T)=\operatorname{ker}(S)$.
(e) (2 points) Give an example of an orthogonal matrix that is not invertible.
(f) (2 points) Give an example of an diagonalizable matrix that is not orthogonally diagonalizable.
2. Let A be defined by

$$
A=\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 4 & 4 \\
0 & 0 & 2
\end{array}\right]
$$

(a) (4 points) Find a basis for the solution space $A x=0$.
(b) (4 points) What is the general solution to $A x=\left[\begin{array}{c}3 \\ 6 \\ -3\end{array}\right]$?
(c) (4 points) Is there a vector $y \in \mathbb{R}^{3}$ such that $A x=y$ has no solutions? If so, give an example. If not, why not?
3. Let A and B be equivalent matrices defined by

$$
A=\left[\begin{array}{ccccc}
-3 & 3 & -1 & -9 & 3 \\
2 & -2 & 1 & 7 & -1 \\
4 & -4 & 5 & 23 & 7
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & -1 & 0 & 2 & -2 \\
0 & 0 & 1 & 3 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=B
$$

(a) (4 points) Find a basis for the solution space of $A x=0$.
(b) (4 points) Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ be the columns of A. Define $C=\left[a_{1} a_{2} a_{3} a_{4}\right]$. What is a particular solution to $C x=a_{5}$?
(c) (4 points) Using the same variables as (b), what is the general solution to $C x=2 a_{4}-a_{5}$?
4. Let S be a subspace of \mathbb{R}^{4} defined by

$$
S=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]\right\}
$$

(a) (3 points) What is a basis for $\left(S^{\perp}\right)^{\perp}$?
(b) (3 points) What is a basis for S^{\perp} ?
(c) (3 points) Does there exist a rank 2 matrix A such that $\operatorname{null}(A)=S$? If so, give an example. If not, why not?
(d) (3 points) Does there exist a rank 3 matrix A such that $\operatorname{null}(A)=S$? If so, give an example. If not, why not?
5. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transform defined by the following properties:

- $T(0,0,1)=(0,0,0)$,
- If v is in the $x y$-plane, then v is reflected across the $x+y=0$ plane.

There is a matrix A such that $T(x)=A x$. The goal of this problem is to understand A.
(a) (3 points) Find a basis $\{u, v, w\}$ where the action of T is well-understood. Give also $T(u), T(v)$, and $T(w)$.
(b) (3 points) Find the eigenvalues of A and a basis for each eigenspace of A. (Think geometrically.)
(c) (3 points) What is A? You may express it as product of matrices and their inverses.
(d) (3 points) What is A^{2} ? Give it explicitly as a single matrix. (Think geometrically.)
6. Let A be the symmetric matrix defined as

$$
A=\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & -2 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & -2 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]^{-1}
$$

(a) (3 points) Find the eigenvalues of A and a basis for each eigenspace of A.
(b) (3 points) Find a basis for each of the following subspaces.

- $\operatorname{null}(A)$
- $\operatorname{null}(A-I)$
- $\operatorname{null}(A-2 I)$.
(c) (3 points) Find an orthogonal matrix Q and a diagonal matrix D such that $A=Q D Q^{-1}$.
(d) (3 points) Find all $k \in \mathbb{R}$ such that $A-k I_{3}$ is not invertible.

7. Let $v=(2,1,2)$ and $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $T(x)=\operatorname{proj}_{v} x$.
(a) (4 points) Find an orthogonal basis for \mathbb{R}^{3} that contains v. (Hint: first find a basis for \mathbb{R}^{3} that contains v.)
(b) (4 points) There exists a matrix A such that $T(x)=A x$. Find the eigenvalues of A and a basis for each eigenspace of A. (Hint: see part (a).)
(c) (4 points) Let $e_{1}=(1,0,0)$. Evaluate the following:

- $A e_{1}$
- $A^{2} e_{1}$
- $A^{100} e_{1}$

