MATH 308 O Final Exam June 8, 2020

Name	
Student ID #	

HONOR STATEMENT

"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE:		
	35	

SOLUTIONS!

1	16	
2	8	
3	18	
4	12	
5	16	
Bonus	5	
Total	70	

- Your exam should consist of this cover sheet, followed by 4 problems and a bonus question. Check that you have a complete exam.
- Pace yourself. You have 110 minutes to complete the exam and there are 5 problems. Try not to spend more than 20 minutes on each problem. You will have 10 minutes at the end of the exam to upload your solutions to Gradescope.
- Show all your work and justify your answers.
- Your answers should be exact values rather than decimal approximations. (For example, $\frac{\pi}{4}$ is an exact answer and is preferable to its decimal approximation 0.7854.)
- This is an open book exam, however, you are not allowed to collaborate with anyone.
- There are multiple versions of the exam, you have signed an honor statement, and cheating is a hassle for everyone involved. DO NOT CHEAT.
- Turn your cell phone OFF and put it AWAY for the duration of the exam.

GOOD LUCK!

- 1. Construct examples. If you are asked to provide an example and there is no such example, write NOT POSSIBLE. No justification required.
 - (a) (2 points) Give an example of a matrix A that represents the following transformation.

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} xy \\ y \end{bmatrix}.$$

Not possible.

(b) (2 points) Give an example of a set of linearly dependent vectors in \mathbb{R}^3 such that when you remove any one of the vectors, the remaining set is linearly independent and spans \mathbb{R}^3 .

(c) (2 points) Give an example of a 3×3 matrix A with eigenvalues 1 and -4, where rank(A) = 2.

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -4 \end{bmatrix}$$

Short Answer Questions.

(d) (4 points) Let $\vec{x} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$. Find a basis \mathscr{B} such that $[\vec{x}]_{\mathscr{B}} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$. Reminder: A basis is a set of vectors, not a matrix.

Want:
$$QB = \xi \vec{u}_1 \vec{u}_2 \vec{d}_3$$
, where for $U = [\vec{u}_1 \vec{u}_2]_1 \vec{x} = U[\vec{x}]_1 \vec{g}_3$.

Let $U = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then $\begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -a + 2b \\ -c + 2d \end{bmatrix}$

So we ned
$$g - a + 2b = 1$$
 Many choises! Pich one! $-c + 2d = 4$. Let $b = 0$, then $a = -1$ $\Rightarrow U = \begin{bmatrix} -1 & 0 \\ -2 & 1 \end{bmatrix}$ Let $d = 1$, then $c = -2$ and $g = 3\begin{bmatrix} -1 & 0 \\ 2 & -2 \end{bmatrix}$

- (e) (6 points) Fill in the blanks. Assume $p(\lambda) = (\lambda)(\lambda + 2)^2(\lambda 2)(\lambda + 4)^3$ is the characteristic polynomial of a matrix A. Then
 - i. A is a $\frac{7}{}$ × $\frac{7}{}$ matrix.
 - ii. The eigenvalues of A are 0, -7, 2, -4
 - iii. Is A invertible? Justify your answer.

No, $\lambda = 0$ is an eigenvalue so by the unifying theorem, A is not invertible.

iv. Is A guaranteed to be diagonalizable? If so, justify your answer. If not, explain what you would need to know to guarantee \mathbb{Z} is diagonalizable.

No, A is not guaranteed to be diagonalizable. To guarantee that A is diagonalizable, we would need to know that E-z (eigenspace corresponding to eigenvalue -2) is 2 dimensional, and E-y (eigenspace corresponding to eigenvalue -4) is 3 dimensional.

(Recall, Eo, Ez are necessaily one dimensional) Then diagonalizability is quaranteed by a Theorem!

- 2. (# Points) Let A and B be $n \times n$ matrices, and determine if the following sets are subspaces of \mathbb{R}^n .
 - (a) $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} = AB\vec{v}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : (A^2 - AB)\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : (A^2 - AB)\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} + AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} + AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} + AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} + AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} + AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} + AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : AB\vec{v} = \vec{O}\}$ $S = \{\vec{v} \in \mathbb{R}^n : AB\vec{v} = \vec{O$

(b)
$$S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} - I_n = \vec{0}\}$$

$$S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} = \vec{I}_n\}$$

$$S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} = \vec{I}_n\}$$

$$S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} = \vec{I}_n\}$$

$$S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} = \vec{I}_n\}$$

$$S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} = \vec{I}_n\}$$

$$S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} = \vec{I}_n\}$$

$$S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} = \vec{I}_n\}$$

$$S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} = \vec{I}_n\}$$

$$S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} = \vec{I}_n\}$$

$$S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} = \vec{I}_n\}$$

$$S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} = \vec{I}_n\}$$

$$S = \{\vec{v} \in \mathbb{R}^n : A^2\vec{v} = \vec{I}_n\}$$

Thus, S'is not a subspace.

(Alternaturely)
S =
$$\frac{2}{7}eR^n: A^2\vec{r} - \vec{e}_i = \vec{o}_j$$

Coes since $A \cdot \vec{o}_j \neq \vec{e}_j$.

(a) (2 points) Produce a 2×2 matrix that reflects \mathbb{R}^2 over the y-axis. Call this matrix S.

(b) (2 points) Produce a 2×2 matrix that rotates \mathbb{R}^2 by 90 degrees ($\frac{\pi}{2}$ radians) counterclockwise. Call this matrix R.

rot
$$(\frac{\pi}{2}) = \begin{bmatrix} \cos(\frac{\pi}{2}) & -\sin(\frac{\pi}{2}) \\ \sin(\frac{\pi}{2}) & \cos(\frac{\pi}{2}) \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

So
$$R = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

(c) (2 points) Compute the matrix that represents a reflection of \mathbb{R}^2 over the y-axis then a rotation by 90 degrees counter-clockwise, in that order Call this matrix C.

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} = :C$$

$$R$$

(d) (2 points) Compute the matrix that represents a rotation of \mathbb{R}^2 by 90 degrees clockwise, then a reflection over the y-axis, in that order. Call this matrix D.

(e) (4 points) Complete the following drawings. Show where the unit square gets mapped and draw F with the correct orientation on the new square. Matrix C denotes the matrix from part (c), and matrix D denotes the matrix from part (d).

(f) (1 point) What relationship do C and D have? What does that mean about S and R? Express the relationship between S and R.

(g) (1 point) What happens if you apply the matrix S twice? Use geometric intuition first and write out what you think will happen, then compute S^2 to justify.

S is a reflection, so we should get the identity. (Reflecting twice takes you back to where you started!)

$$S^{2} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}^{2} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

(h) (4 points) Use part (f) and part (g) to simplify the following expression as much as possible: SRSRSRSRSRSRSRS.

4. Let A be a 3×3 matrix that satisfies the equation

$$A^3 + 2A^2 - I = 0$$

(a) (4 points) Show that the matrices A and A+2I are invertible.

A3+2A2-I=0 $\frac{A^{3}+2A^{2}=I}{A(A^{2}+2A)=I}$ $\frac{A(A^{2}+2A)=I}{A(A+2I)}=I$ $A^{3}(A+2I)=I$ $A^{3}(A+2I)$ unique inverse! unique inverse!

Method 2: 43 + 242 = I A2 (A+ZI) = I So: $det(A^2(A+2I)) = det(I)$ $det(A^2) det(A+2I) = 1$ det(A) det(A) det(A+2I) =1

(b) (4 points) If $det(A) = \sqrt{3}$, what is the det(A + 2I)? Since A2 (A+ZI) = I, as above in method2, det(A) det(A) det(A+2I) = det(I) = 1(N3) (N3) det (A+ZI) = 1 det (4+2I) = = =

we still (c) (4 points) Explain why -2 is not an eigenvalue of A.

If -2 were an eigenvalue, then there would necessarily be a non-zero eigenvector \vec{v} such that $A\vec{v} = -2\vec{v}$, But this means

has non-trivial solutions, so null (A+ZI) + &OS. This means A+ZI is not invertible, but by applying the Unitying theorem we see this contradicts part (b) since det(A+ZI) = \frac{1}{3} \div 0.

- 5. A linear transformation $T:\to\mathbb{R}^4\to\mathbb{R}^3$ has the following properties:
 - The vector $\begin{bmatrix} 1\\0\\2 \end{bmatrix}$ is in the range(T), but $\begin{bmatrix} 0\\-1\\1 \end{bmatrix}$ is not.
 - The vectors $\vec{v}_1 = \begin{bmatrix} 1\\0\\2\\0 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix}$ both satisfy $T(\vec{v}_1) = T(\vec{v}_2) = \begin{bmatrix} 2\\1\\2 \end{bmatrix}$.

Answer the following questions about T. Justify your answers. And do not try to find the matrix representing T.

(a) (1 point) Is T one-to-one? No, \vec{J}_1 and \vec{J}_2 map to the same vector.

(b) (1 point) Is T onto?

No, [?] is not in range (T), so it cannot be onto.

(c) (2 points) Determine the dim(range(T)).

Dim (varge (T)) $\neq 3$ since T is not onto. It is at least 2 since $\left[\frac{1}{2}\right]$ and $\left[\frac{2}{2}\right]$ are both in range(T), and form a linearly independent set: $\left[\frac{1}{2},\frac{2}{2}\right]^{0}$ $\left[\frac{1}{2},\frac{$

(d) (2 points) Find a basis for range(T).

Brange (T) must contain 2 elements since dim (range (T)) = 2.
Since
$$\{\{2\}, \{2\}\}\}$$
 is a linearly independent set (see part c), we can pick $\{\{2\}, \{2\}\}\}$.

(e) (3 points) Find a nonzero vector \vec{x} such that $T(\vec{x}) = \vec{0}$.

Notice:
$$T(\vec{v}_1) - T(\vec{v}_2) = \begin{bmatrix} \frac{7}{2} - \frac{7}{2} \end{bmatrix} = \vec{0}$$

$$= T(\vec{v}_1 - \vec{v}_2), \quad \text{so} \quad T(\vec{v}_1 - \vec{v}_2) = \vec{0}.$$
Pick $\vec{x} = \vec{v}_1 - \vec{v}_2 = \begin{bmatrix} \frac{7}{2} \\ \frac{7}{2} \end{bmatrix} - \begin{bmatrix} \frac{7}{2} \\ \frac{7}{2} \end{bmatrix} = \begin{bmatrix} \frac{7}{2} \\ \frac{7}{2} \end{bmatrix}$

- (f) (3 points) Is your answer from part (e) a basis for $\ker(T)$?

 No. The set $\left\{ \begin{bmatrix} 2 \\ 2 \end{bmatrix} \right\}$ is linearly independent (being non-zero), but by the rank-nullty Theorem, since $\dim(\operatorname{range}(T)) = 2$, we have $\dim(\operatorname{range}(T)) + \dim(\ker(T)) = 4$, so $\dim(\ker(T)) = 2$ and we see that we need at least two linearly independent vectors in a basis for $\ker(T)$.
- (g) (4 points) Find another vector \vec{w} that is not \vec{v}_1 or \vec{v}_2 such that $T(\vec{w}) = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$.

Take
$$\vec{v}_i$$
 and add a vector from the null space.
(Recall, $\vec{x}_g = \vec{x}_p + \vec{x}_h = \text{null space}$) Since $\begin{bmatrix} \frac{2}{3} \\ \frac{2}{3} \end{bmatrix} \in \text{ker}(\vec{T})$,

pick $\vec{w} = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} + \begin{bmatrix} \frac{2}{12} \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$.

(This works! $\vec{T}(\vec{v}_i + \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}) = \vec{T}(\vec{v}_i) + \vec{D}$
 $= \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$.

BONUS: The transpose operation is a linear transformation on $n \times n$ matrices. By "linear transformation on $n \times n$ matrices" we mean that the transpose operation satisfies the two usual conditions in the definition, but instead of applying the transformation to a vector, we can apply it to a matrix.

- (a) (1 point) Show that the transpose operation is a linear transformation on $n \times n$ matrices.
- ① $(B+A)^T = B^T + A^T$.
 ② $(fA)^T = f(A^T)$. Properties of the transpose.

(b) (4 points) Since the transpose is a linear transformation, we can find a matrix that represents it. However, that requires understanding that a collection of $m \times m$ matrices can be thought of as some \mathbb{R}^n . Find a matrix that represents this linear transformation on 2×2 matrices. **Hint:** Can you write the matrix as a vector somehow? You must choose a basis. (No credit will be awarded if it is not clear what basis you have chosen.)

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then $A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$.

To think of A as a vector ... pick:

$$B_{2xz} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\},$$

basis for $2xz$ matrices.

Then $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = a \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$

and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ represents the matrix. Then we want a linear trains for matrix sending $A = \begin{bmatrix} a \\ b \\ d \end{bmatrix} = \begin{bmatrix} a \\ c \\ b \end{bmatrix} = A^T B_{2xz}$

Pick:

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

then $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

then $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

then $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

then $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

then $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

then $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

then $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$