MATH 308 M Exam II February 21, 2020

Name _____

Student ID #_____

HONOR STATEMENT

"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE:

1	16	
2	6	
3	14	
4	14	
Bonus	8	
Total	50	

- Your exam should consist of this cover sheet, followed by 4 problems and a bonus question. Check that you have a complete exam.
- Pace yourself. You have 50 minutes to complete the exam and there are 4 problems. Try not to spend more than 10 minutes on each problem.
- Show all your work and justify your answers.
- Your answers should be exact values rather than decimal approximations. (For example, $\frac{\pi}{4}$ is an exact answer and is preferable to its decimal approximation 0.7854.)
- You may use TI-30X IIS calculator and one 8.5×11-inch sheet of handwritten notes. All other electronic devices (including graphing calculators) are forbidden.
- The use of headphones or earbuds during the exam is not permitted.
- There are multiple versions of the exam, you have signed an honor statement, and cheating is a hassle for everyone involved. DO NOT CHEAT.
- Turn your cell phone OFF and put it AWAY for the duration of the exam.

GOOD LUCK!

- (16 Points) True / False and Short Answer.
 Clearly indicate whether the statement is true or false and justify your answer.
 - (a) **TRUE** / **FALSE** \mathbb{R}^2 is a subspace of \mathbb{R}^4 .

(b) **TRUE** / **FALSE** Let A be an $n \times m$ matrix such that $A^T \vec{x} = \vec{b}$ is a consistent linear system for every \vec{b} in \mathbb{R}^m . Then n < m.

Give an example of each of the following. If there is no such example, write NOT POSSIBLE and **justify why it is not possible.** If you provide an example, you do not need to justify why the example works.

(c) Give an example of a matrix A such that $A^8 = I_2$, but $A^k \neq I_2$ for an integer k such that 0 < k < 8.

(d) Give an example of a linear transformation $T : \mathbb{R}^3 \mapsto \mathbb{R}^3$ such that Range(T) = Ker(T). [*Hint:* Consider the Rank-Nullity Theorem.]

(e) **Give an example** of a linear transformation $T : \mathbb{R}^m \mapsto \mathbb{R}^n$ where m < n and T is not one-to-one.

- 2. (6 points)
 - (a) Recall from M126 that the Taylor series for the exponential function is $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$. Since we know how to take powers of a matrix, we can use this to define the exponential of a square $n \times n$ matrix A:

$$e^A = \sum_{n=0}^{\infty} \frac{1}{n!} A^n$$

where we use the convention that $A^0 = I_n$ and 0! = 1. Compute e^A where A is the matrix $\begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix}$. **Hint:** If you compute the powers of the matrix correctly, you will not need to take an infinite sum.

(b) (**BONUS: 3 points**) Using the same instructions from part (a), compute e^A where A is the matrix $\begin{bmatrix} 7 & 0 \\ 0 & 9 \end{bmatrix}$.

3. (14 Points) Let T be a linear transformation such that $T(\vec{x}) = A\vec{x}$ where A and its equivalent reduced row echelon form is given by

$$A = \begin{bmatrix} 0 & 2 & 6 & 14 \\ 2 & -1 & 1 & 11 \\ 1 & -1 & -1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & 9 \\ 0 & 1 & 3 & 7 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) What is the domain of T?
- (b) What is the codomain of T?
- (c) Is the null space of A in the domain or codomain? Give a basis for Null(A).

- (d) Is the column space of A in the domain or codomain? Give a basis for Col(A).
- (e) Is the row space of A in the domain or codomain? Give a basis for Row(A).
- (f) Is T one-to-one? Onto? Justify your answer.

4. (14 points)

(a) Let A be any square matrix A. Show that the set S consisting of the vectors \vec{v} that are fixed by the matrix A is a subspace, i.e. show that the set of vectors \vec{v} such that $A\vec{v} = \vec{v}$ is a subspace.

(b) Now, let

$$A = \begin{bmatrix} 3 & -2 & 3 \\ 4 & -3 & 6 \\ 2 & -2 & 4 \end{bmatrix}.$$

Give a basis for S as given in part (a). You may use the back of this page if you need more space.

Bonus: (5 points) A quadratic form is a function $Q(\vec{x})$ that satisfies the following two properties:

- (a) $Q(r\vec{x}) = r^2 Q(\vec{x})$ for any vector \vec{x} and r any real number (scalar).
- (b) Fix a vector \vec{y} . Then $T(\vec{x}) = Q(\vec{x} + \vec{y}) Q(\vec{x}) Q(\vec{y})$ is a degree one polynomial in the entries of \vec{x} (i.e. T is a linear equation).

Show that for a 2×2 matrix A, the function $Q : \mathbb{R}^2 \to \mathbb{R}$ given by

$$Q(\vec{x}) = \vec{x}^T A \vec{x}$$

is a quadratic form. (Note: \vec{x}^T is a row vector.)