Math 308 Conceptual Problems #6Chapter 6 (6.1-6.2)

(1) Google the word 'eigenfaces' and look at the Wikipedia page, which has some pictures. (They come from artificial intelligence research on computer vision).

Here, a vector \mathbf{v} represents an image. Basically \mathbf{v} is the list of RGB color values of each pixel in the image, so $\mathbf{v} \in \mathbb{R}^N$ for some very large N. An 'eigenface' is an eigenvector for a matrix related to 'image vectors'.

(This is not a homework problem – just a neat application of linear algebra that's outside the scope of Math 308.)

(2) (Practice showing that something is a subspace). Suppose λ is an eigenvalue for the matrix A. Consider the λ -eigenspace of A:

$$E_{\lambda}(A) = \{ \mathbf{v} \in \mathbb{R}^n : A\mathbf{v} = \lambda \mathbf{v} \},\$$

the set of all vectors \mathbf{v} satisfying the equation $A\mathbf{v} = \lambda \mathbf{v}$. One reason why $E_{\lambda}(A)$ is a subspace is because it is the nullspace of $A - \lambda I$. Show that $E_{\lambda}(A)$ is a subspace by directly checking the three conditions needed to be a subspace.

(3) Let
$$A = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$$
.

- (a) Compute the eigenvalues and eigenvectors of A.
- (b) If λ is an eigenvalue of A then there is a vector **v** such that $A\mathbf{v} = \lambda \mathbf{v}$. Using this equation, show that λ^2 is an eigenvalue of A^2 . What is an eigenvalue of A^{-1} ? Now compute all eigenvalues and eigenvectors of A^2 and A^{-1} .
- (c) Find a matrix B that shares an eigenvector with A but has different eigenvalues.
- (d) Find an invertible matrix P and a diagonal matrix D so that $A = PDP^{-1}$. Then, compute A^{1000} .
- (e) Suppose \mathbf{v} is an eigenvector of an arbitrary matrix M, with eigenvalue λ . Show (using matrix algebra) that \mathbf{v} is also an eigenvector of M + I, but with a different eigenvalue. What eigenvalue is it?
- (4) (Reflections and projections)
 - (a) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the transformation from the conceptual problems for Chapter 4:

$$T(\mathbf{x}) = \frac{1}{3} \begin{bmatrix} -1 & -2 & 2\\ -2 & 2 & 1\\ 2 & 1 & 2 \end{bmatrix} \mathbf{x}.$$

Determine the eigenvalues of T, and find a basis for each eigenspace.

(b) Remember that T is supposed to be 'reflection across a plane S'. Explain what the eigenvalues and eigenvectors from (a) mean geometrically. What is their relationship to S? Why does it make sense for the eigenvalues to be 1 and -1?

(c) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the "averaging transformation":

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} \frac{1}{3}(x_1 + x_2 + x_3) \\ \frac{1}{3}(x_1 + x_2 + x_3) \\ \frac{1}{3}(x_1 + x_2 + x_3) \\ \frac{1}{3}(x_1 + x_2 + x_3) \end{bmatrix}.$$

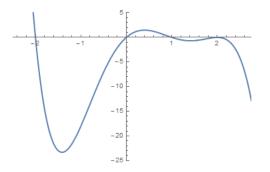
Find all eigenvalues and eigenspaces for T. Explain your answer (what does it mean in terms of 'averaging'?)

- (5) (Rotations)
 - (a) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be rotation by $\pi/3$. Compute the characteristic polynomial of T, and find any eigenvalues and eigenvectors.
 - (b) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a rotation in \mathbb{R}^3 by $\pi/3$ around some chosen axis L, a line through the origin in \mathbb{R}^3 . Without computing any matrices, explain why $\lambda = 1$ is always an eigenvalue of T. What is the corresponding eigenspace?

(6) Find a 3 × 3 matrix A with eigenvectors
$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
 with $\lambda = 1$, $\mathbf{v}_2 = \begin{bmatrix} 0\\-1\\1 \end{bmatrix}$ with $\lambda = 2$ and $\mathbf{v}_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ with $\lambda = 10$.

(**Hint**: A must be diagonalizable, $A = PDP^{-1}$. Figure out P and D, then compute A directly.)

(7) Here is the graph of the characteristic polynomial of a 5×5 matrix A:



You may say "not enough information" for any of the following. Justify your answers.

- (a) What polynomial has the above graph?
- (b) What are the eigenvalues of A?
- (c) Compute nullity(A + 2I).
- (d) What can you say about the value of rank(A 2I)?
- (e) Compute $det(A \lambda I)$.
- (f) What can you say about det(A + I)?
- (g) Do the columns of A span \mathbb{R}^5 ?
- (h) Is A diagonalizable?

- (8) Suppose $T : \mathbb{R}^4 \to \mathbb{R}^4$ with $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ is a linear transformation such that
 - (0, 0, 1, 0) and (0, 0, 0, 1) lie in the kernel of T, and
 - all vectors of the form $(x_1, x_2, 0, 0)$ are reflected about the line $2x_1 x_2 = 0$.
 - (a) Compute all the eigenvalues of A and a basis of each eigenspace.
 - (b) Is A invertible? Explain.
 - (c) Is A diagonalizable? If yes, write down its diagonalization (you can leave it as a product of matrices). If no, why not?