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ABSTRACT. We study a particular type of finite area, infinite-type translation surfaces, and find explicit
examples of types of cylinder decompositions on these surfaces which do not manifest on finite-type
translation surfaces.

1. INTRODUCTION AND DEFINITIONS

A translation surface is a (countable) collection of polygons in the plane where all edges are
paired with an edge of equal length by translation such that inward pointing normal vectors for
each edge point in opposite directions after identification. Finite-type translation surfaces are col-
lections of finitely many polygons with only finitely many edges, whereas infinite-type translation
surfaces allow for constructions containing countably many polygons allowing infinitely many
edges. See, for example, [4].

In this article, we define a particular infinite-type translation surface to study, which we call an
armadillo tail surface, or armadillo tail. We place a square, which we denote by□1, in the first quadrant
so that the lower left vertex lies at the origin and all edges are parallel to the axes. For k ≥ 1, glue
the left side of □k+1 to the right side of □k so that the bottom edge of all squares lie on the x-axis. We
denote the side length of □k by lk, and assume that (lk) is a strictly decreasing sequence. We then
identify horizontal (vertical, resp.) edges via vertical (horizontal, resp.) translation. Bowman [2]
and Degli Esposti–Del Magno–Lenci [3] have also built infinite-type translation surfaces in a similar
fashion but allowed rectangles instead of squares; the surface in the former article is known as a
“stack of boxes” and the one in the latter, “Italian billiards.”

The following are examples of finite-area armadillo tail surfaces.

Example 1.1. (1) The armadillo tail surface where lk = rk−1, for r ∈ (0, 1), which we call a
geometric armadillo with parameter r. Its area is 1

1−r2 .
(2) The harmonic armadillo tail where lk = 1

k . While the surface is not bounded in the horizontal

direction, its area is ζ(2) = π2

6 , finite.

FIGURE 1. The harmonic armadillo tail surface
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We attain a finite translation surface we call the truncated armadillo tail which is
n⋃

k=1
□k where

we make the same identifications as above, except that we identify the right edge of □n with the
bottom segment of the left edge of □1. We denote the truncated armadillo tail by Xn.

Without loss of generality, we assume that l1 = 1. With horizontal (vertical, resp.) edges being
identified via vertical (horizontal, resp.) translation, the resulting translation surface is an infinite
genus surface (infinite connected sum of square tori) with one (wild) singularity. For background
on wild singularities, see [2], [4], [8]. The wild singularity appears infinitely many times in the
polygonal representation of the surface: each vertex of the infinite-sided polygon is the same point
on the surface.

Armadillo tails are concrete, toy examples that we use for prodding at both the geometric and
dynamical properties of finite area, infinite-type translation surfaces with one wild singularity (and
no other singularities). In what follows, our focus is on a purely geometric construction: a cylin-
der decomposition on this surface. Finding cylinder decompositions on a surface is challenging,
even on finite translation surfaces. Here, we are able to leverage the structure of the surface to
inductively construct cylinders.

We begin with definitions, and an example, before stating the main result. A cylinder is a closed
subspace of the surface whose interior is foliated by homotopic closed straight-line trajectories,
and whose boundary consists of saddle connections, line segments whose endpoints coincide with
a singular point. A closed geodesic in a cylinder is called a waist curve. The circumference of a
cylinder is the length of a closed straight-line trajectory, and the width of a cylinder is the distance
between the bounding saddle connections. A cylinder decomposition is the closure of a union of
possibly infinitely many cylinders whose waist curves are in the same direction and which covers
the surface. Further, we require that each cylinder in the cylinder decomposition only intersect
another cylinder at most along a saddle connection. The closure of the union of cylinders may
contain a line segment that is not in any cylinder which we call a spine. If a spine is made of a single
saddle connection, we call it a rigid spine. If a spine is comprised of multiple (possibly infinitely
many) saddle connections, we call it a flexible spine. If a cylinder decomposition has no spine, we
say it is a complete cylinder decomposition.

As an example, consider the cylinder decomposition C of an armadillo tail in the rather obvious
horizontal direction, given our choice of polygonal representation of the surface. See Figure 2.

FIGURE 2. A cylinder decomposition of a geometric armadillo tail in the horizontal direction

Observe that as we move from top to bottom, each cylinder in the cylinder decomposition be-
comes longer and thinner, eventually limiting to a concatenation of infinitely many cylinders at
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the base of the polygonal representation. This may appear to be a flexible spine, but each of these
saddle connections is a boundary component of a cylinder, namely “top” of a cylinder, since the
bottom saddle connections are the same as the the saddle connections appearing at the top of each
square. Indeed, this is a complete cylinder decomposition.

There is another cylinder decomposition intimately related to the above cylinder decomposition,
what we call the orthogonal cylinder decomposition, C⊥. In the original cylinder decomposition shown
in Figure 2, label the cylinders numerically from top to bottom, cylk. Then, cyl⊥1 , the first cylinder
in C⊥ has width equal to the circumference of cyl1 in C. The circumference of cyl⊥1 is equal to the
sum of all of the widths of the cylinders in the original cylinder decomposition. Similarly, the cyl⊥2
has width equal to the height of cyl2 less the height of cyl1. The circumference of cyl⊥2 is the sum of
all of the widths of the cylinders in C less the width of cyl1. Each subsequent cylinder is defined in
the same manner. See Figure 3.

FIGURE 3. A cylinder decomposition of an armadillo tail in the vertical direction

Remark 1.2. Observe that the modulus of each cylinder in the orthogonal cylinder decomposition

is 1. This implies that there exists an affine diffeomorphism of the surface ϕ such that Dϕ =

[
1 0
1 1

]
,

where Dϕ is an element in the Veech group. See Appendix D in [5] for additional information. Ob-
serve that Dϕ is a parabolic element in SL2(R), where the eigendirection of Dϕ corresponds to the
direction of the cylinder decomposition. We will refer to an affine diffeomorphism whose deriva-
tive is a parabolic element as a parabolic affine diffeomorphism. A parabolic affine diffeomorphism is
an example of a reducible element in the mapping class group of the underlying surface.

1.1. Main results. There is another less obvious cylinder decomposition on the surface which does
not appear in the orbit of this horizontal cylinder decomposition (orbit of the group of affine auto-
morphisms of the surface). In the same way that the above cylinder decomposition is comprised of
an infinite number of cylinders limiting to a spine, this cylinder decomposition will also. However,
the distinction is that this one limits to a rigid spine, not a flexible spine.

Theorem 1.3. There exists a cylinder decomposition limiting to a rigid spine on any geometric
armadillo tail of parameter 1

q , q ∈ N \ {1}. Moreover, there is no parabolic affine diffeomorphism
of the surface that fixes this cylinder decomposition.

The proof of the theorem is constructive. In Section 2, we identify a core curve in a special di-
rection, which turns out to be a rigid spine of a cylinder decomposition. This curve wraps around
every torus in the surface. Then we construct a cylinder which turns out to be the widest cylinder
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in the cylinder decomposition. In Section 3, we inductively construct a collection of saddle connec-
tions which turn out to frame all of the cylinders in our cylinder decomposition. In Section 4, we
construct the cylinder decomposition by defining a (discontinuous) map which pushes a cylinder
to a subset of the next widest cylinder in the decomposition. We call the subset of a cylinder a
“partial cylinder.” See Section 4 for a definition. We “fill in” the missing segments of the cylinder
using a circle rotation argument. Indeed, the endpoints of the partial cylinder correspond to peri-
odic points of a circle rotation. In Section 5, we compute the modulus and area of each cylinder in
the cylinder decomposition.

It seems feasible to extend our methods to the case of r = p
q , provided one can find enough

cylinders to start the induction process. Moreover, the induction process may involve fixed points
of a finite-type interval exchange transformation (IET) in lieu of a circle rotation. See [10] for a
description of IETs.

In Section 6, we show that there cannot be a parabolic element that stabilizes the cylinder de-
composition that we construct. Moreover, we note that the orthogonal cylinder decomposition to
this cylinder decomposition does not exist.

1.2. Related work. Bowman studies the “geometric limit” of finite translation surfaces converging
to an infinite-type translation surface [1]. Along these lines, we can think of a geometric armadillo
tail as the limit of finite-type translation surfaces. Indeed, consider the truncated surface Xn. The
cylinder decomposition in the special direction persists for all surfaces in this sequence. Moreover,
for all finite surfaces in the sequence, there is a parabolic element that preserves both this cylinder
decomposition and another that preserves the orthogonal cylinder decomposition. However, in the
limit, the cylinders converge to a cylinder decomposition, but the parabolic affine diffeomorphism
does not converge to any sensible affine map on the surface.

For particular directions on an armadillo tail, one can use Treviño’s work, Theorem 3 in [9], to
see if one can conclude that the linear flow in that direction is ergodic. However, there does not
appear to be a (Veech) dichotomy in which each direction is either periodic or ergodic: the Veech
group appears to be Z and not a lattice. It is an interesting question as to what ergodic measures
are supported on an armadillo tail (geometric or otherwise). A generalization of a Veech dichotomy
of this flavor was done for infinite staircase surfaces by Hooper, Hubert, and Weiss [6].

Lastly, there is an open question regarding whether or not there exists a finite area, infinite-type
translation surface with a Veech group that is a lattice in SL2(R) (see [4]). One might think that a
particular geometric armadillo tail is a candidate, but it seems as though the Veech group may be
Z. A proof that the Veech group is Z would be interesting.

1.3. Acknowledgements. The authors would like to thank David Aulicino, Matt Bainbridge, and
Pat Hooper for helpful conversations.

2. THE SPINE (OR A PARTICULAR DIRECTION ON GEOMETRIC ARMADILLO TAILS)

The following is a key theorem in which we identify a closed saddle connection which turns
out to be a (limiting) rigid spine of a cylinder decomposition on a certain family of armadillo tails.
Every armadillo tail is an infinite connected sum of tori; this particular saddle connection wraps
around each torus. Note that the following theorem is very general and requires no assumption on
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the parameter r. By 1
2−r -direction, we mean the direction with slope 1

2−r relative to our polygonal
representation.

FIGURE 4. A geometric armadillo tail (r = 4/5) with a trajectory of slope 5
6 = 1

2−r

Theorem 2.1. On geometric armadillo tails for any r ∈ (0, 1), there exists a closed saddle connection
in the 1

2−r -direction that intersects every torus.

Proof. We refer to the top (horizontal) edge of a square by the roof and the right (vertical) edge of a
square that is identified to a segment on the y-axis by the portal.

We start from the origin, the lower left vertex of □1. Since r < 1
2−r < 1, the straight line of

slope 1
2−r through the origin hits the portal of □1 at point (1, 1

2−r ). By identification with the y-axis
(the left edge of □1), the trajectory continues and hits the roof of □1 at (1 − r, 1) . By identifica-
tion with the bottom edge of □1, the trajectory continues from (1 − r, 0) and hits the roof of □2 at
(1 + r(1 − r), r) . The trajectory partitions both roofs with a fixed ratio. Hence, due to similarity in
consecutive squares, it continues to hit every roof partitioning them with the same ratio. Needless
to say, the trajectory “wraps around every torus” without hitting any vertex. □

Via renormalization (under the action of

(
1 0
−1 1

)
, see Remark 1.2), one can consider the trajec-

tory with slope 1
2−r − 1 = r−1

2−r direction. Starting from the upper left vertex at (0, 1), the trajectory

hits the portal on □1 at
(

1, 1
2−r

)
. By identification, continuing from

(
0, 1

2−r

)
, the trajectory does

not hit any roof or portal and tends to
(

1
1−r , 0

)
, hence producing a saddle connection. In fact, given

our polygonal representation, any trajectory starting from (0, 0) with slope 1
2−r + n, for any n ∈ N,

(or (0, 1) with slope 1
2−r − n, for n ∈ N) yields a saddle connection that goes through every torus.

We will see that this saddle connection is the rigid spine of a cylinder decomposition.
Moreover, the saddle connection of Theorem 2.1 has an interesting topological feature.

Proposition 2.2. The saddle connection of Theorem 2.1 is a non-separating simple closed curve.

Proof. If we color the surface on one side of the saddle connection, we will color the entire surface.
□

In the following theorem, we show that for a specific family of geometric armadillo tails, i.e.,
when r = 1

q for q ∈ N \ {1}, there exists not only a saddle connection but a cylinder in the 1
2−r -

direction. (Figure 5) We call this cylinder cyl1, and the existence of this cylinder will be part of the
base case for the induction that follows.

Theorem 2.3. Given any geometric armadillo tail with parameter r = 1
q , there exists a cylinder in

the 1
2−r -direction which lies entirely in □1 ∪□2.
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FIGURE 5. The cylinder cyl1 on a geometric armadillo tail with parameter 1/2 (left)
and 1/3 (right)

There are three parts to this proof. First, we show that there is a saddle connection (in the 1
2−r -

direction) that lies entirely in X2. Secondly, we will show that there is another saddle connection in
X2 parallel to the first one. In the third step, we will show that there is no saddle connection be-
tween the two saddle connections, and consequently that the interstitial space is foliated by closed
geodesics, hence yielding a cylinder.

Proof. Note, for q = N \ {1}, the slope of the trajectory is 1
2−r = q

2q−1 .

Step 1. We show that the trajectory from (1, 0) with slope q
2q−1 stays entirely in X2.

Start from (1, 0) we hit the portal of □2 at
(

1 + 1
q , 1

2q−1

)
, hence the first point at which the tra-

jectory hits the vertical axis is at
(

0, 1
2q−1

)
. We continue and hit

(
1, 1+q

2q−1

)
, and since 1

q < 1+q
2q−1 < 1,

the trajectory goes through the portal and is identified to
(

0, 1+q
2q−1

)
. Note that if we keep hitting the

portal, the nth time the trajectory hits the vertical axis is at
(

0, 1
2q−1 + (n−1)q

2q−1 − ⌊ 1
2q−1 + (n−1)q

2q−1 ⌋
)

. In

fact, since 1
2q−1 < 1

q < 2
2q−1 , we will always hit the portal unless the numerator of 1

2q−1 + (n−1)q
2q−1 −

⌊ 1
2q−1 + (n−1)q

2q−1 ⌋ is 1. Pick n = 2q − 2, then the trajectory hits the singularity at (1, 1). In other
words, the trajectory goes through □2 exactly once at the beginning and stays in □1 until it hits a
singularity.

Furthermore, this is the first time the trajectory hits the singularity. This follows from the fact that
gcd(q, 2q − 1) = 1. The trajectory hits the y-axis at points

{
(0, y) : y ∈

{
(n−1)q+1

2q−1 − ⌊ (n−1)q+1
2q−1 ⌋

}}
.

Note that the numerator of the y-coordinates in this set is

{1, 1 + q, 1 + 2q, . . . , 1 + (2q − 3)q ≡ 0 mod (2q − 1)} .

Note that if we had continued to add q
2q−1 , we would have hit 1+(2q−2)q

2q−1 ≡ q
2q−1 and 1+(2q−1)q

2q−1 ≡
1

2q−1 , which brings us back to the beginning of the sequence. In other words, the trajectory wraps

around □1 exactly 2q − 3 times hitting the y-axis at
{(

0, i
2q−1

)}2q−2

i=1, ̸=q
.

Alternatively, notice that once the trajectory enters square one, we can encode the hitting points
on the portal (which are identified to the left side of square 1) via a circle rotation that arises as a
section of the linear flow with slope q

2q−1 . We use this perspective in Step 2 and 3 below.
Step 2. The saddle connection that we constructed above will serve as the “bottom” boundary

saddle connection of cyl1. Next, we will construct a saddle connection which will end up being
the “top” boundary saddle connection. To do this, we will take the bottom saddle connections and
show that if we shift the saddle connection vertically (in the polygonal representation) by q−1

q(2q−1) ,

that we find another saddle connection. A consequence of step 3, which follows, is that q−1
q(2q−1) is
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the skew-width of this cylinder, the vertical distance (with respect to the polygonal representation)
between the two saddle connections. The skew-width is formally defined in Section 3.

Take the set of points where the bottom saddle connection hits the y-axis and add q−1
q(2q−1) :{

i
2q − 1

}2q−2

i=1, ̸=q
+

q − 1
q(2q − 1)

=

{
(i + 1)q − 1

q(2q − 1)

}2q−2

i=1, ̸=q
,

where a set + number denotes adding the number to each element of the set. We split this set into
three cases: (1) i = 1, . . . , q − 2, (2) i = q − 1, and (3) i = q + 1, . . . , 2q − 2.

Define T : [0, 1]/∼ → [0, 1]/∼ be a circle rotation where T(x) = x + q
2q−1 . Note that the circle

rotation is a section of the linear flow on □1, provided we never enter □2. We can guarantee
that the linear flow does not enter □2 provided the iterates of the circle rotation are greater than

or equal to 1
q . Observe that every point in the set

{
(i+1)q−1
q(2q−1)

}2q−2

i=1, ̸=q
is greater than or equal to 1

q .

Moreover, the image of these points under T is always greater than 1
q , except for the image of the

point corresponding to case (2): i = q − 1. We will address this when it arises.
First, observe that T maps points corresponding to case (1) to a points corresponding to case (3).

Indeed, take points in (1), (i = 1, . . . , q − 2), and apply T. We have

T
(
(i + 1)q − 1

q(2q − 1)

)
=

(i + 1 + q)q − 1
q(2q − 1)

∈
{
(j + 1)q − 1

q(2q − 1)

}2q−1

j=q+1
.

Next, observe that the points in case (3) map to points in case (1), with one exception, in which
case the image of point corresponds to the point in case (2). Take points in case (3), (i = q +

1, . . . , 2q − 2) and apply T. For all points except i = 2q − 2 we have

T
(
(i + 1)q − 1

q(2q − 1)

)
=

(i + 1 + q)q − 1
q(2q − 1)

≡ (i − q + 2)q − 1
q(2q − 1)

∈
{
(j + 1)q − 1

q(2q − 1)

}q−2

j=1
.

If i = 2q − 2, then we have T
(
(2q−1)q−1

q(2q−1)

)
= q2−1

q(2q−1) ∈
{

(i+1)q−1
q(2q−1)

}
i=q−1

, which corresponds to the

point in case (2).
Lastly, consider the point in case (2), where i = q − 1. We have

T
(

q2 − 1
q(2q − 1)

)
=

2q2 − 1
q(2q − 1)

≡ q − 1
q(2q − 1)

<
1
q

.

Since the trajectory hits the right side of□1 below the portal, we continue into□2 and hit
(

1 + 1
q , 1

q

)
,

the singularity at the upper right vertex of □2.
Now, observe that if we begin with i = 1, the sequence of iterates of T will include every point in

case (1) and case (3), and then hit the point in case (2). In other words, the suspension of the linear
flow is a closed saddle connection that passes through

(
0, 1

q

)
that lies entirely in □1 and □2.

Step 3. Lastly, we show that between these two saddle connections there is no other saddle
connection in with slope q

2q−1 . In other words, there are no saddle connections that hit the vertical

axis between
(

0, 1
2q−1

)
and

(
0, 1

q

)
.

Define the intervals along the y-axis with y-coordinates in ( i
2q−1 , i

2q−1 +
q−1

q(2q−1) ), for i ∈ {1, 2, · · · , 2q−
2} \ {q}. The lower bound in each interval coincides with an intersection of the (bottom) saddle
connection constructed in step 1 with the y-axis. Similarly, the upper bound coincides with an
intersection of the (top) saddle connection constructed in step 2 with the y-axis.



8 DAMI LEE AND JOSH SOUTHERLAND

First, observe that the intervals do not contain a singularity. The only appearances of the wild
singularity along the y-axis for y > 1

2q−1 occur for y = 1
q and y = 1, neither of which land inside

any of the intervals.
Now, fix any 0 < ε < q−1

q(2q−1) and consider the collection of points (0, yi) for yi =
i

2q−1 + ε, for
i ∈ {1, 2, · · · , 2q − 2} \ {q}. (There is one point in each of the intervals.) By applying the map T
to the point in the interval corresponding to i = 1, we see that the the image is the point in the
collection corresponding to the interval i = q + 1. The argument is the same as the one given in
step (2). We continue applying the map T until we reach the last interval in the set, (0, yq−1). Here
the image of the circle rotation contains the singular point infinitely many times, but this is because
the circle rotation no longer applies. Indeed, T(yq−1) <

1
q which means that the suspended flow is

actually entering □2. (This is identical to the situation described in case (2) in step 2.) If we flow in
the linear direction from (0, yq−1), we hit the portal in □2 at (1+ 1

q , y1), which means that the linear
flow starting at (0, y1) is a closed geodesic.

Moreover, since the choice of ε allows for any point in the interval, the suspension of these
intervals consists of closed geodesics.

In conclusion, on a geometric armadillo tail with parameter r = 1
q , there exists a cylinder that

lies entirely in □1 and □2. We call this cylinder cyl1. □

Remark 2.4. The assumption that r = 1
q cannot be removed. For example, if r = 2/3, the saddle

connection starting from (1, 0) is not contained in □1 and □2, but also passes through □3.

3. FRAMING (OR FINDING THE BOTTOM SADDLE CONNECTION OF EACH CYLINDER BY

INDUCTION)

This section provides the construction of saddle connections that later become a part of the bot-
tom saddle connection of each cylinder. In the following, Lemma 3.2 shows this for k = 2, and
Theorem 3.3 generalizes this for all k.

Notation 3.1. In what follows, we will construct sets of saddle connections bsck,q. In Section 4,
these sets will be realized as the bottom boundary saddle connection of the kth widest cylinder in
the cylinder decomposition on the geometric armadillo with parameter 1

q . To reduce the notational
complexity, and since most of the following statements fix q, we will write bsck in lieu of bsck,q.

In the following lemma, for every q ∈ N \ {1}, we construct a single saddle connection that lies
in the set bsc2. We use the linear flow with slope q

2q−1 , but the reader may also interpret the work
as identifying fixed points of an IET arising from a section of the linear flow.

Lemma 3.2. Given any geometric armadillo tail with parameter r = 1
q , q ∈ N \ {1}, we can con-

struct a saddle connection called bsc′2.

Proof. We use the following notations:

• x−→ indicates the linear flow where the horizontal displacement is x,

• portal(#)−−−−−→ indicates that the flow hit a portal of □#, i.e., the x-coordinate is 1 + · · ·+ 1
q#−1 and

the y-coordinate lies between 1
q# and 1

q#−1 , hence it is mapped to the corresponding point on
the y-axis.

• roof(#)−−−−→ indicates that the flow passed the roof of □#, i.e., the point is not on the polygonal
representation of the surface, hence the y-coordinate is to be adjusted.
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We show that a linear flow in the q
2q−1 -direction from

(
1 + 1

q , 0
)

contains the top saddle connec-
tion of cyl1.

(
1 +

1
q

, 0
) 1

q2
−→

(
1 +

1
q
+

1
q2 ,

1
q(2q − 1)

)
portal(3)−−−−−→

(
0,

1
q(2q − 1)

)
1−→
(

1,
1 + q2

q(2q − 1)

)
portal(1)−−−−−→

(
0,

1 + q2

q(2q − 1)

)
roof(1)−−−−→

(
1,

1 + q
q(2q − 1)

)
.

All operations above apply to all q ∈ N \ {1}. Observe that 1+q
q(2q−1) =

1
q if q = 2, and 1+q

q(2q−1) <
1
q

if q > 2.
If q = 2, the linear flow in the q

2q−1 -direction from
(

1 + 1
q , 0
)

to
(

1, 1+q
q(2q−1)

)
is a saddle connec-

tion, bsc′2.
If q > 2, we have 1+q

q(2q−1) < 1
q . Hence we do not yet have a saddle connection. Continuing from

the last expression we have,

(
1,

1 + q
q(2q − 1)

) 1
q−→
(

1 +
1
q

,
1 + 2q

q(2q − 1)

)
roof(2)−−−−→

(
1 +

1
q

,
2

q(2q − 1)

)
portal−−−→

(
0,

2
q(2q − 1)

)
1−→
(

1,
2 + q2

q(2q − 1)

)
portal−−−→

(
0,

2 + q2

q(2q − 1)

)
1−→
(

1,
2 + 2q2

q(2q − 1)

)
roof(1)−−−−→

(
1,

2 + q
q(2q − 1)

)
.

Note that 2+q
q(2q−1) =

1
q if q = 3, and 2+q

q(2q−1) <
1
q if q > 3. Hence we have a saddle connection bsc′3.

Induction hypothesis n+q
q(2q−1) =

1
q if q = n + 1.

Inductive step We show that n+1+q
q(2q−1) =

1
q if q = n + 2.

Assume that the linear flow has not yielded a saddle connection yet, i.e., n > q − 1. Then,

(
1,

n + q
q(2q − 1)

)
1/q−−→

(
1 +

1
q

,
n + 2q

q(2q − 1)

)
roof(2)−−−−→

(
1 +

1
q

,
n + 1

q(2q − 1)

)
portal−−−→

(
0,

n + 1
q(2q − 1)

)
1−→
(

1,
n + 1 + q2

q(2q − 1)

)
portal−−−→

(
0,

n + 1 + q2

q(2q − 1)

)
1−→
(

1,
n + 1 + 2q2

q(2q − 1)

)
roof(1)−−−−→

(
1,

n + 1 + q
q(2q − 1)

)
Since n+1+q

q(2q−1) =
1
q for n + 1 = q − 1, this concludes our proof that bsc′2 exists for all q ∈ N \ {1}.

□

In the following Lemma, for every q ∈ N \ {1}, we construct a single saddle connection that lies
in the set bsck for an integer k > 2. The previous Lemma serves as the base case for an induction
proof that show the existence of this saddle connection

Theorem 3.3. Given any geometric armadillo tail with parameter r = 1
q , q ∈ N \ {1}, there exists a

saddle connection that we call bsc′k.

Proof. We use the same notations we did in the previous lemma.
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(
1 + · · ·+ 1

qk−1 , 0
)

1/qk

−−→
(

1 + · · ·+ 1
qk ,

1
qk−1(2q − 1)

)
portal−−−→

(
0,

1
qk−1(2q − 1)

)
1−→
(

1,
1 + qk

qk−1(2q − 1)

)
1−→
(

1,
1 + 2qk

qk−1(2q − 1)

)
roof(1)−−−−→

(
1,

1 + qk−1

qk−1(2q − 1)

)
.

The last point above is a singularity if q = 2 and k = 2, however, we assume k is large enough
and continue.

· · · 1/q−−→
(

1 +
1
q

,
1 + 2qk−1

qk−1(2q − 1)

)
roof(2)−−−−→

(
1 +

1
q

,
1 + qk−2

qk−1(2q − 1)

)
.

Again, the last expression is a singularity if q = 2 and k = 3.
Induction hypothesis For l sufficiently less than k, assume(

1 + · · ·+ 1
ql ,

1 + qk−l−1

qk−1(2q − 1)

)
is a singularity if q = 2.
Inductive step We show that (

1 + · · ·+ 1
ql+1 ,

1 + qk−l−2

qk−1(2q − 1)

)
is a singularity if q = 2.

For q > 2, we then have

1/ql+1

−−−→
(

1 + · · ·+ 1
ql+1 ,

1 + 2qk−l−1

qk−1(2q − 1)

)
roof(l+2)−−−−−→

(
1 + · · ·+ 1

ql+1 ,
1 + qk−l−2

qk−1(2q − 1)

)
,

and the last expression is a singularity if q = 2, and this proves our hypothesis.
Let l = k− 3, then the last expression becomes

(
1 + · · ·+ 1

qk−2 , 1+q
qk−1(2q−1)

)
, which is a singularity

for q = 2. For q > 2, we have

(
1 + · · ·+ 1

qk−2 , 1+q
qk−1(2q−1)

) 1/qk−1

−−−→
(

1 + · · ·+ 1
qk−1 , 1+2q

qk−1(2q−1)

)
roof(k)−−−−→

(
1 + · · ·+ 1

qk−1 , 2
qk−1(2q−1)

) portal−−−→
(

0, 2
qk−1(2q−1)

)
1−→
(

1, 2
qk−1(2q−1)

)
.

We claim that the rest follows from the induction technique used in the Lemma 3.2. □
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Define bsc1 to be the saddle connection constructed in Step 1 of Theorem 2.3. Then define bsc2

to be the concatenation of two saddle connections, one being the one constructed in Step 2 of The-
orem 2.3, the other being bsc′2. Observe that we can write bsc2 = bsc1 +

q−1
q(2q−1) ∪ {bsc′2}, where

∪ means concatenate, and addition means shifting the saddle connections in the set vertically by
q−1

q(2q−1) . To do this carefully, we need to remove the singular point(s) from the saddle connections,
then vertically shift, and then take the closure. (A vertical shift is not well-defined at a singular
point.)

We will use this observation to inductively construct the sets bsck which will be realized in
Section 4 as the bottom saddle connections of the kth widest cylinder. We begin by constructing the
set bsc3. This will be our base case.

Lemma 3.4. Define bsc3 = bsc2 +
q−1

q2(2q−1) ∪ {bsc′3}. Then bsc3 is a concatenation of 2 saddle con-
nections.

Proof. Clearly, bsc′2 is one of the two saddle connections. We show that bsc2 +
q−1

q2(2q−1) yields a
single saddle connection.

Idea: start at (0, 1− 1
q −

1
q2 ) = (0, X + q−1

q2(2q−1) ). Circle rotate until you hit under 1
q . The sc should

then flow out to hit a singularity at the top right of square 3. □

Lemma 3.5. Define bsck+1 = bsck +
q−1

qk(2q−1)
∪ {bsc′k+1}. Then bsck+1 is a concatenation of 2 saddle

connections.

Proof. We prove this by induction, where Lemma 3.4. Assume that bsck is a a single saddle connec-
tion. It suffices to show that bsck +

q−1
qk(2q−1)

is a single saddle connection. □

Theorem 3.6. The trajectory here means two saddle conections trajectory starting from
(

1 + 1
q + · · ·+ 1

qk−1 , 0
)

in the q
2q−1 -direction, i.e., bsck hits {([0, y) : 0 < y < 1} at{{

1
2q − 1

, · · · ,
q̂

2q − 1
, · · · ,

2q − 2
2q − 1

}
+

k−1
∑

i=1

q − 1
qi(2q − 1)

}
⋃ {{

i
q(2q − 1)

,
i + q2

q(2q − 1)

}q−1

i=1
+

k−1
∑

i=2

q − 1
qi(2q − 1)

}
...⋃ {{

i
qj−1(2q − 1)

,
i + qj

qj−1(2q − 1)

}q−1

i=1
+

k−1
∑
i=j

q − 1
qi(2q − 1)

}
...

⋃ {
i

qk−1(2q − 1)
,

i + qk

qk−1(2q − 1)

}q−1

i=1
where “set + number” indicates that the number is added to every element in the set.

Proof. This set is constructed inductively using the □

4. FINDING SUCCESSIVE CYLINDERS IN THE 1
2−r -DIRECTION

Definition 4.1. Given cylk, we define the skew-width of cylk as the vertical distance (vertical in rela-
tion to the polygonal representation) between the two boundary saddle connections of cylk through
the cylinder.
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The definition of skew-width above needs to find its home.
In this section, we use induction to construct the bottom saddle connection of the kth cylinder

and hence the cylinder themselves in the 1
2−r -direction.

We define a map fr to construct new cylinders from existing cylinders.

Definition 4.2. The map f̃r : R2 → R2, where

f̃r :

(
x
y

)
7→
(

rx + 1
ry

)
.

Observe that f̃r is an injective map.

The map does not descend from R2 to a well-defined map on the quotient of the polygonal rep-
resentation of an armadillo tail. The issue is that the map does not respect the vertical gluings (by
horizontal translations). For instance, the leftmost edge of □1 is mapped to the leftmost edge of □2,
but the leftmost edge of □2 is glued to the right edge of □2. However, the map does descend to a
partial quotient, where we only identify the top and bottom edges, since f̃r respects the identifica-
tions along the tops and bottoms of the squares. That is the content of the following lemma, whose
proof is elementary.

Lemma 4.3. Let Pr be the polygonal representation of an armadillo tail X with parameter r such
that the polygonal representation is embedded in R2 and the edge identifications forgotten. Let Xtb

be a quotient of Pr by identifying the top and bottom edges only. Let □tb
k denote the kth-square in

Xtb. Then f̃r descends to a map fr on Xtb. The image of □tb
k under fr is □tb

k+1.

Let q : Pr → Xtb be the quotient map identifying the top and bottom edges of the polygon. Let
cylk be a cylinder, and lift cylk to Xtb. Call this lift cyltb

k . Let L and R denote the unidentified left and
right edges of the polygon. Inductively define cylk+1 as the closure of q ◦ fr(cyltb

k \ (L ∪ R)) with
respect to the linear flow in the 1

2−r -direction. Observe that cylk+1 does not depend on the chosen
lift of cylk.

Given a geometric armadillo tail with parameter r = 1/q, first we show that cylk lies entirely on

Xk+1 =
k+1⋃
i=1

□i. Then q ◦ fr(cylk) is a subset of a cylinder that lies in Xtb
k+1 \□1. We will show that

there is a circle rotation on {0} × [0, 1] that fills in q ◦ fr(cylk) at the points of discontinuity.
We define where the circle rotation is defined, and prove that waist curves of cylinders are peri-

odic points under the circle rotation.
We define the generation zone as the preimage of cyl1 in X \□1 under fr:

generation zone := f−1
r (Int(cyl1 ∩□2))

=

{
(x, y) :

1
2 − r

x < y <
1

2 − r
x +

1 − r
2 − r

, 0 ≤ x ≤ 1
}

.

Given the set of points where cylk intersects {0} × [0, 1] and {1} × [0, 1], we remove the points
that lie in the generation zone. Define sets S1 (and S2, resp.) on {0} × [0, 1] (and {1} × [0, 1], resp.)
as the image of the remaining points under fr. That is,

S1 = projy ◦ fr

(
γ ∩

{
(0, y) : 0 < y <

1
2 − r

})
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and

S2 =

{
fr

(
γ ∩

{
(0, y) :

1 − r
2 − r

< y < 1
})}

where projy(x, y) = (0, y) is the projection onto the y-axis.

Recall the circle rotation T(x) = x + q
2q−1 . Note that q ◦ fr(cylk) ⊂ Xtb \ □1 is a subset of a

cylinder. Since the circle rotation is a section of the linear flow, we “fill in” q ◦ fr(cylk) at the points
of discontinuity to construct cylk+1. Figure 6 illustrates the setting.

FIGURE 6. cyl1 \ generation zone(left), fr (cyl1 \ generation zone) (center), con-
necting S1 and S2 via the circle rotation T (right). The dotted lines represent bsc2 in □1.

We illustrate the simplest case (k = 1) before we prove the general case for all k. Since we can
explicitly write the points at which bsc1 intersects the y-axis (Theorem 2.3), we consider bsc1 instead
of the waist curves of cyl1. These points are{

1
2q − 1

, . . . ,
q̂

2q − 1
, . . . ,

2q − 2
2q − 1

}
,

hence we have

S1 =

{
(0, y) : y =

1
q(2q − 1)

, . . . ,
q − 1

q(2q − 1)

}
, S2 =

{
(1, y) : y =

q − 1
q(2q − 1)

, . . . ,
2q − 2

q(2q − 1)

}
.

Take i = 1, . . . , q − 2, then

i
q(2q − 1)

T−→ i + q2

q(2q − 1)
T−→ i + 2q2

q(2q − 1)
≡ i

q(2q − 1)
,

where 1
q < i+q2

q(2q−1) < 1 for i ∈ {1, . . . , q − 2}. We note that
{(

0, i+q2

q(2q−1)

)}q−2

i=1
are q − 2 additional

points where we hit the y-axis.
When i = q − 1,

q − 1
q(2q − 1)

T−→ q − 1 + q2

q(2q − 1)
T−→ q − 1 + 2q2

q(2q − 1)
≡ 2q − 1

q(2q − 1)
.

First note that
(

1, 2q−1
q(2q−1)

)
is a singularity. Take γ to be a waist curve slightly above this to avoid

the singularity and carry on by iterating T. Moreover, note that T2q−1
(

q−1
q(2q−1)

)
= q−1+(2q−1)q2

q(2q−1) ≡
q−1

q(2q−1) . We will show below that for any m < 2q − 1, the mth iterate hits the portal of □1, i.e.,
1
q < Tm( q−1

q(2q−1) ) =
q−1+mq2

q(2q−1) < 1. This adds an additional q − 2 points where we hit the y-axis.

Lemma 4.4. Given a geometric armadillo tail with parameter 1/q, and an infinite cylinder de-
composition in the q

2q−1 -direction, the skew-width of cylk is q−1
qk(2q−1)

, and the width of cylk is
q−1

qk
√

q2+(2q−1)2
.

Theorem 4.5. The circle rotation T : [0, 1]/∼ → [0, 1]/∼ where T(x) = x + q
2q−1 maps S1 to S2

defined above.
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Proof. Theorem 3.6 tells us exactly where bsck intersects {[0, y] : 0 < y < 1}. Recall that S1 consists
of points on {0} × [0, 1] whose y-coordinates are

1
q

k−1⋃
j=1

{{
i

qj−1(2q − 1)

}q−1

i=1
+

k−1

∑
i=j

q − 1
qi(2q − 1)

}
∪
{

i
qk−1(2q − 1)

}q−1

i=1


and S2 consists of points on {1} × [0, 1] whose y-coordinates are

1
q

{{
q − 1

2q − 1
,

q + 1
2q − 1

, · · · ,
2q − 2
2q − 1

}
+

k−1
∑

i=1

q − 1
qi(2q − 1)

}
∪

k−1⋃
j=2

1
q

{{
i + qj

qj−1(2q − 1)

}q−1

i=1
+

k−1
∑
i=j

q − 1
qi(2q − 1)

}

∪ 1
q

{
i + qk

qk−1(2q − 1)

}q−1

i=1

.

These can be simplified to

S1 =

(0, y) : y ∈
k−1⋃
j=1

{
(i + 1)qk−j − 1

qk(2q − 1)

}q−1

i=1

∪
{

i
qk(2q − 1)

}q−1

i=1


and

S2 =

(1, y) : y ∈
{
(1 + i)qk−1 + qk − 1

qk(2q − 1)

}q−2

i=−1,i ̸=0

∪
k−1⋃
j=2

{
(1 + i)qk−j + qk − 1

qk(2q − 1)

}q−1

i=1

∪
{

i + qk

qk−1(2q − 1)

}q−1

i=1

 .

We will show that under some iterate of T, S1 maps onto S2. We will break this down into three
cases. In each case, we show that a point in S1 maps to a point in S2 under T2 (or T2q−1) but any

fewer iterate of T maps it to the complement of S2 on {1} × [0, 1], i.e.,
{
(1, y) :

q
2q − 1

< y < 1
}

.

Case 1. First we have T
(

i
qk(2q−1)

)
= i+qk

qk(2q−1)
for any i ∈ {1, . . . , q − 1}.

Case 2-1. Consider the cases where j = 2, . . . , k − 1, and i = 1, . . . , q − 1. Then

T2

(
(i + 1)qk−j − 1

qk(2q − 1)

)
=

(i + 1)qk−j − 1 + 2qk+1

qk(2q − 1)
≡ (i + 1)qk−j − 1 + qk

qk(2q − 1)
.

We show that T
(
(i+1)qk−j−1

qk(2q−1)

)
does not hit any point in S2, i.e.,

1
q
<

(i + 1)qk−j − 1 + qk+1

qk(2q − 1)
< 1.

The left inequality holds since it is equivalent to the inequalities below:

qk−1(2q − 1) < (i + 1)qk−j − 1 + qk+1

1 < (i + 1)qk−j + qk+1 − qk−1(2q − 1)
= qk−1 ((i + 1)q1−j + (q − 1)2) ,

and the right inequality holds since it is equivalent to

qk(q − 1) > (i + q)qk−j − 1

qk (q − 1 − (i + 1)q−j)+ 1 ≥ qk
(

q − 1 − q
qj

)
+ 1 > 0.
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Case 2-2. Next, the cases where j = 1 and i = 1, . . . , q − 2 can be shown with the same technique
as in Case 2-1: we have

T2

(
(i + 1)qk−1 − 1

qk(2q − 1)

)
=

(i + 1)qk−1 − 1 + 2qk

qk(2q − 1)
≡ (i + 1)qk−1 − 1 + qk

qk(2q − 1)
,

and 1
q < T

(
(i+1)qk−1−1

qk(2q−1)

)
< 1. The left inequality holds since

qk−1(2q − 1) < (i + 1)qk−1 − 1 + qk+1

1 < qk−1 (i + 2 + 2q + q2) .

However, the right inequality holds only for i = 1, . . . , q − 2 :

(i + 1)qk−1 − 1 + qk+1 < 2qk+1 − qk

−1 < qk+1 − (i + 2)qk = qk (q − (i + 2)) .

Case 3. Lastly, we deal with j = 1 and i = q − 1.

After 2q − 1-iterates, qk−1
qk(2q−1)

is mapped to itself. We need to show that for any m < 2q − 1,

Tm

(
qk − 1

qk(2q − 1)

)
falls between

1
q

and 1, hence does not hit any other point in S2.

If m = 2l, (l = 1, . . . , q − 1), then

Tm

(
qk − 1

qk(2q − 1)

)
=

qk − 1 + 2lqk

qk(2q − 1)
≡ (l + 1)qk − 1

qk(2q − 1)
.

We show that
1
q
<

(l + 1)qk − 1
qk(2q − 1)

< 1.

The left-hand inequality is equivalent to

qk−1(2q − 1) < (l + 1)qk − 1
1 < (l + 1)qk − qk−1(2q − 1) = qk−1 ((l + 1)q − (2q − 1)) = ((l − 1)q + 1) ,

and the right-hand inequality is equivalent to

(l + 1)qk − 1 < qk(2q − 1)
−1 < qk(2q − 2 − l).

If m = 2l + 1, (l = 1, . . . , q − 2), then

Tm

(
qk − 1

qk(2q − 1)

)
=

qk − 1 + (2l + 1)qk+1

qk(2q − 1)
≡ (l + 1)qk − 1 + qk+1

qk(2q − 1)
.

Again, we show that this does not hit any point in S2. First it is greater than
1
q

since

qk−1(2q − 1) < (l + 1)qk − 1 + qk+1

1 < qk−1 ((l + 1)q + q2 + (1 − 2q)
)
= qk−1 (q2 + (l − 1)q + 1

)
,

and less than 1 since

(l + 1)qk − 1 + qk+1 < qk(2q − 1)
−1 < qk (2q − 1 − (l + 1)− q) = qk (q − (l + 2)) .
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Take γ to be ε above bsck. We have thus connected the disconnected segments of fr(cylk) to con-
struct a waist curve of cylk+1. □

Figure 7 shows the first few cylinders in this cylinder decomposition for r = 1
2 .

FIGURE 7. Cylinder decomposition on the geometric armadillo tail (r = 1/2)

Proposition 4.6. Given a geometric armadillo tail with parameter r = 1
q , there exists an infinite

cylinder decomposition in the 1
2−r -direction. The number of times cylk intersects the y-axis is 2kq −

(2k + 1). Hence the sum of all skew-widths is:
∞

∑
k=1

(2kq − (2k + 1)) · q − 1
qk(2q − 1)

=
q − 1

2q − 1

∞

∑
k=1

(
2k

qk−1 − 2k
qk − 1

qk

)
=

q − 1
2q − 1

(
2q2

(q − 1)2 − 2q
(q − 1)2 − 1

q − 1

)
= 1

for all q ∈ N \ {1}.

5. AREA OF CYLINDERS

In Lemma 4.4, we found the width of each cylinder. In this section, we will show the length of
the waist curve for each cylinder to find the area of cylk as a function of q.

First, we will find the horizontal displacement of each waist curve. The table below lists the side
lengths of each square and the number of times a waist curve of cylk goes through each square.
This follows from the circle rotation defined in the previous section.

□1 □2 · · · □i · · · □k □k+1

side length 1 1/q 1/qi−1 1/qk−1 1/qk

# k(2q − 2)− 1 (k − 1)(q − 1) (k − i + 1)(q − 1) q − 1 1
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Then the horizontal displacement of a waist curve of cylk is

k(2q − 2)− 1 +
1
q
(k − 1)(q − 1) +

1
q2 (k − 2)(q − 1) + · · ·+ 1

qk−1 (q − 1) +
1
qk

= k(2q − 2)− 1 +
k−1
∑

i=1

(k − i)(q − 1)
qi +

1
qk

= k(2q − 2)− 1 +
q − 1

qk

k−1
∑

i=1
(k − i)qk−i +

1
qk

= k(2q − 2)− 1 +
(k − 1)qk+1 − kqk + q

qk(q − 1)
+

1
qk .

For the last equality, we refer to the remark below.

Remark 5.1. The previous computation follows since:

k−i
∑

i=1
(k − i)qk−i = q + 2q2 + 3q3 + · · ·+ (k − 1)qk−1

= q + 2q2 + 3q3 + · · ·+ (k − 1)qk−1 +
(

q + · · ·+ qk−1
)
−
(

q + · · ·+ qk−1
)

= 2q + 3q2 + · · ·+ kqk−1 − q(qk−1 − 1)
q − 1

=
(

q2 + · · ·+ qk
)′

− qk − q
q − 1

=

(
q2(qk−1 − 1)

q − 1

)′

− qk − q
q − 1

=
(k − 1)qk+1 − kqk + q

(q − 1)2 .

Proposition 5.2. The horizontal displacement of the waist curve of cylk is

(2q − 1)

(
k − qk − 1

qk(q − 1)

)
and the actual length of the waist curve, i.e., the circumference of cylk is(

k − qk − 1
qk(q − 1)

)√
(2q − 1)2 + q2.

Furthermore, the modulus of cylk is given as

circumference
width

=
q2 + (2q − 1)2

(q − 1)2

(
kqk+1 − (k + 1)qk + 1

)
,

and the area of cylk is given by

area (cylk) =

(
k − qk − 1

qk(q − 1)

)
q − 1

qk .

Next, we verify that given r = 1/q, the infinite sum of area(cylk) is equal to 1
1−r2 , hence there

exists an infinite cylinder decomposition in the 1
2−r -direction.

Proposition 5.3. Given a geometric armadillo tail with parameter r = 1
q , q ∈ N \ {1}, we show that

∞

∑
k=1

area (cylk) =
1

1 − r2 =
q2

q2 − 1
,

where the cylinders lie in the 1
2−r -direction.
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Proof. We write area (cylk) =
k(q−1)

qk − 1
qk +

1
q2k . Following the same spirit as a previous remark, we

use
∞
∑

i=1
iri = r

(1−r)2 , for |r| < 1. The sum of the first terms is

∞

∑
k=1

k(q − 1)
qk =

q
q − 1

.

The second and third terms are geometric sequences, hence we have
∞

∑
k=1

area (cylk) =
q

q − 1
+

1
q − 1

+
1

q2 − 1
=

q2

q2 − 1
,

our desired result. □

6. NO PARABOLIC ELEMENT

Consider the horizontal cylinder decomposition of the armadillo tail seen in Figure 2. The orthog-

onal cylinder decomposition is comprised of exactly the squares. The element

[
1 0
1 1

]
is in the Veech

group of the surface and this parabolic element corresponds to the perpendicular cylinder decom-
position: indeed, the affine map associated with this Veech group element twists these cylinders,
but preserves them as a set.

This phenomenon is understood in the finite translation surface setting, where the existence of
a cylinder decomposition with rationally related moduli implies a parabolic element in the Veech
group and vice-versa. Here, we see that in the perpendicular cylinder decomposition, the modulus
of each cylinder is 1 since each cylinder is a square. However, the moduli of the cylinders in the
horizontal cylinder decomposition in Figure 2 goes to infinity, and there is no parabolic element in
that direction.

FIGURE 8. Cylinder decomposition C in the 1
2−r direction

Lemma 6.1. Let C be a cylinder decomposition on a finite area infinite translation surface. Then if
the moduli of the cylinders tend to ∞, there is no parabolic element in the Veech group correspond-
ing to an affine map that preserves the cylinder decomposition.

Remark 6.2. The lemma allows for rationally related moduli, hence distinguishes the finite trans-
lation surface setting from the infinite translation surface setting.
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Proof. Assume otherwise. Then Dϕ is a parabolic element in SL2(R), where the eigendirection
corresponds to the direction of the cylinder decomposition. Up to conjugation, Dϕ is of the form[

1 p
0 1

]
for some p. However, there exists a cylinder in the decomposition with circumference

greater than p, for any fixed p. This leads to a contradiction since the cylinder cannot be stabilized
by Dϕ. □

Corollary 6.3. Let C be the cylinder decomposition constructed in the previous sections of this
paper. There is no parabolic element in the Veech group corresponding to this cylinder decompo-
sition.

Proof. We observe that the modulus of cylk goes to ∞ as k goes to infinity. □

Remark 6.4. In work of Hooper and Treviño [7], they observe that the golden ladder has a cylinder
decomposition whose moduli are all equal, and the corresponding perpendicular cylinders are
symmetric. They are able to find two parabolics, one in each direction. The construction of these
parabolics was described by Thurston in the finite genus case. For the infinite genus case, see [7] or
the Hooper–Thurston–Veech construction in [4].

Lemma 6.5. Let C be the cylinder decomposition constructed in the previous sections of this paper.
There is no perpindicular cylinder decomposition.

Proof. □
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